
Neo4j.rb Documentation
Release 9.2.3

Chris Grigg, Brian Underwood

May 11, 2018

Contents

1 Introduction 3
1.1 Terminology . 3

1.1.1 Neo4j . 3
1.1.2 Neo4j.rb . 4

1.2 Code Examples . 4
1.2.1 ActiveNode . 4

1.3 Setup . 4

2 Setup 5
2.1 Ruby on Rails . 5

2.1.1 Generating a new app . 5
2.1.2 Adding the gem to an existing project . 6
2.1.3 Rails configuration . 6
2.1.4 Configuring Faraday (HTTP only) . 7

2.2 Any Ruby Project . 8
2.2.1 Connection . 8

2.3 What if I’m integrating with a pre-existing Neo4j database? . 9
2.4 Heroku . 9

3 Upgrade Guide 11
3.1 The neo4j gem from 8.x to 9.x . 11
3.2 The neo4j-core gem from 8.x to 9.x . 11
3.3 The neo4j gem from 7.x to 8.x and the neo4j-core gem from 6.x to 7.x 11

3.3.1 What has changed . 12
3.3.2 The neo4j-core gem . 12
3.3.3 The neo4j gem . 13

4 Rake Tasks 17

5 ActiveNode 19
5.1 Properties . 19

5.1.1 Labels . 20
5.1.2 Indexes and Constraints . 20
5.1.3 Labels . 20
5.1.4 Serialization . 21
5.1.5 Enums . 21

5.2 Scopes . 22

i

5.3 Wrapping . 24
5.4 Callbacks . 24
5.5 created_at, updated_at . 24
5.6 Validation . 25
5.7 id property (primary key) . 25
5.8 Associations . 25

5.8.1 Updating Associations . 26
5.8.2 Polymorphic Associations . 26
5.8.3 Dependent Associations . 27
5.8.4 Association Options . 28
5.8.5 Creating Unique Relationships . 28
5.8.6 Eager Loading . 28

6 ActiveRel 31
6.1 When to Use? . 31
6.2 Setup . 31
6.3 Relationship Creation . 32

6.3.1 From an ActiveRel Model . 32
6.3.2 From a has_many or has_one association . 33
6.3.3 Creating Unique Relationships . 33

6.4 Query and Loading existing relationships . 33
6.4.1 :each_rel, :each_with_rel, or :pluck methods . 33

6.5 Accessing related nodes . 33
6.6 Advanced Usage . 34

6.6.1 Separation of Relationship Logic . 34
6.7 Additional methods . 35
6.8 Regarding: from and to . 35

7 Properties 37
7.1 Validations . 38
7.2 Undeclared Properties . 38

7.2.1 Types and Conversion . 38
7.2.2 Custom Converters . 39

8 Unique IDs 41
8.1 Defining your own ID . 41
8.2 Using internal Neo4j IDs as id_property . 42
8.3 A note regarding constraints . 42
8.4 Adding IDs to Existing Data . 42
8.5 Working with Legacy Schemas . 42

9 Querying 45
9.1 Introduction . 45
9.2 ActiveNode . 45

9.2.1 Simple Query Methods . 45
9.2.2 Proxy Method Chaining . 46
9.2.3 The Query API . 49
9.2.4 #proxy_as . 50
9.2.5 match_to and first_rel_to . 50
9.2.6 Finding in Batches . 50
9.2.7 Orm_Adapter . 50
9.2.8 Find or Create By. 51

10 Query Examples 53

ii

10.1 Example 1: Find all contacts for a user two hops away, but don’t include contacts which are only one
hop away . 53

10.2 Example 2: Simple Recommendation Engine . 54

11 QueryClauseMethods 57
11.1 Neo4j::Core::Query . 57

11.1.1 #match . 57
11.1.2 #optional_match . 60
11.1.3 #using . 60
11.1.4 #where . 61
11.1.5 #where_not . 65
11.1.6 #match_nodes . 67
11.1.7 #unwind . 68
11.1.8 #return . 69
11.1.9 #order . 70
11.1.10 #limit . 72
11.1.11 #skip . 73
11.1.12 #with . 74
11.1.13 #with_distinct . 75
11.1.14 #create . 76
11.1.15 #create_unique . 78
11.1.16 #merge . 79
11.1.17 #delete . 80
11.1.18 #set_props . 81
11.1.19 #set . 82
11.1.20 #on_create_set . 83
11.1.21 #on_match_set . 84
11.1.22 #remove . 85
11.1.23 #start . 86
11.1.24 clause combinations . 87

12 Configuration 91
12.1 In Rails . 91
12.2 Other Ruby apps . 91
12.3 Variables . 91
12.4 Instrumented events . 93

13 Migrations 95
13.1 Generators . 95
13.2 Transactions . 96
13.3 The schema file . 96
13.4 Tasks . 96

13.4.1 neo4j:migrate:all . 96
13.4.2 neo4j:migrate . 97
13.4.3 neo4j:migrate:up . 97
13.4.4 neo4j:migrate:down . 97
13.4.5 neo4j:migrate:status . 97
13.4.6 neo4j:rollback . 97
13.4.7 neo4j:schema:dump . 97
13.4.8 neo4j:schema:load . 97

13.5 Integrate Neo4j.rb with ActiveRecord migrations . 98
13.6 Migration Helpers . 98

13.6.1 #execute . 98
13.6.2 #query . 98

iii

13.6.3 #remove_property . 98
13.6.4 #rename_property . 98
13.6.5 #drop_nodes . 98
13.6.6 #add_label . 99
13.6.7 #add_labels . 99
13.6.8 #remove_label . 99
13.6.9 #remove_labels . 99
13.6.10 #rename_label . 99
13.6.11 #add_constraint . 99
13.6.12 #drop_constraint . 99
13.6.13 #add_index . 100
13.6.14 #drop_index . 100
13.6.15 #say . 100
13.6.16 #say_with_time . 100
13.6.17 #populate_id_property . 101
13.6.18 #relabel_relation . 101
13.6.19 #change_relations_style . 101

14 Testing 103
14.1 How to clear the database . 103

14.1.1 Cypher DELETE . 103
14.1.2 The database_cleaner gem . 104
14.1.3 Delete data files . 104
14.1.4 RSpec Transaction Rollback . 104
14.1.5 Using Rack::Test . 105

15 Contributing 107
15.1 The Neo4j.rb Project . 107
15.2 Low Hanging Fruit . 107
15.3 Communicating With the Neo4j.rb Team . 107
15.4 Running Specs . 108
15.5 Before you submit your pull request . 108

15.5.1 Automated Tools . 108
15.5.2 Documentation . 108

16 Additional Resources 109

17 Helper Gems 111
17.1 devise-neo4j . 111
17.2 cancancan-neo4j . 111
17.3 neo4j-paperclip . 111
17.4 neo4jrb_spatial . 111
17.5 neo4j-rspec . 111

18 Additional features include 113

19 Requirements 115

20 Indices and tables 117

iv

Neo4j.rb Documentation, Release 9.2.3

Contents:

Contents 1

Neo4j.rb Documentation, Release 9.2.3

2 Contents

CHAPTER 1

Introduction

• Terminology

– Neo4j

– Neo4j.rb

• Code Examples

– ActiveNode

• Setup

Neo4j.rb is an ActiveRecord-inspired OGM (Object Graph Mapping, like ORM) for Ruby supporting Neo4j 2.1+.

1.1 Terminology

1.1.1 Neo4j

Node An Object or Entity which has a distinct identity. Can store arbitrary properties with values

Label A means of identifying nodes. Nodes can have zero or more labels. While similar in concept to relational table
names, nodes can have multiple labels (i.e. a node could have the labels Person and Teacher)

Relationship A link from one node to another. Can store arbitrary properties with values. A direction is required but
relationships can be traversed bi-directionally without a performance impact.

Type Relationships always have exactly one type which describes how it is relating it’s source and destination nodes
(i.e. a relationship with a FRIEND_OF type might connect two Person nodes)

3

http://en.wikipedia.org/wiki/Object-relational_mapping
http://en.wikipedia.org/wiki/Object_%28computer_science%29

Neo4j.rb Documentation, Release 9.2.3

1.1.2 Neo4j.rb

Neo4j.rb consists of the neo4j and neo4j-core gems.

neo4j Provides ActiveNode and ActiveRel modules for object modeling. Introduces Model and Association
concepts (see below). Depends on neo4j-core and thus both are available when neo4j is used

neo4j-core Provides low-level connectivity, transactions, and response object wrapping. Includes Query class for
generating Cypher queries with Ruby method chaining.

Model A Ruby class including either the Neo4j::ActiveNode module (for modeling nodes) or the
Neo4j::ActiveRel module (for modeling relationships) from the neo4j gem. These modules give classes
the ability to define properties, associations, validations, and callbacks

Association Defined on an ActiveNode model. Defines either a has_one or has_many relationship to a model.
A higher level abstraction of a Relationship

1.2 Code Examples

With Neo4j.rb, you can use either high-level abstractions for convenience or low level APIs for flexibility.

1.2.1 ActiveNode

ActiveNode provides an Object Graph Model (OGM) for abstracting Neo4j concepts with an ActiveRecord-like
API:

Models to create nodes
person = Person.create(name: 'James', age: 15)

Get object by attributes
person = Person.find_by(name: 'James', age: 15)

Associations to traverse relationships
person.houses.map(&:address)

Method-chaining to build and execute queries
Person.where(name: 'James').order(age: :desc).first

Query building methods can be chained with associations
Here we get other owners for pre-2005 vehicles owned by the person in question
person.vehicles(:v).where('v.year < 2005').owners(:other).to_a

1.3 Setup

See the next section for instructions on Setup

4 Chapter 1. Introduction

CHAPTER 2

Setup

The neo4j.rb gems (neo4j and neo4j-core) support both Ruby and JRuby and can be used with many different
frameworks and services. If you’re just looking to get started you’ll probably want to use the neo4j gem which
includes neo4j-core as a dependency.

Below are some instructions on how to get started:

2.1 Ruby on Rails

The following contains instructions on how to setup Neo4j with Rails. If you prefer a video to follow along you can
use this YouTube video

There are two ways to add neo4j to your Rails project. You can generate a new project with Neo4j as the default model
mapper or you can add it manually.

2.1.1 Generating a new app

To create a new Rails app with Neo4j as the default model mapper use -m to run a script from the Neo4j project and
-O to exclude ActiveRecord like so:

rails new myapp -m http://neo4jrb.io/neo4j/neo4j.rb -O

Note: Due to network issues sometimes you may need to run this command two or three times for the file to download
correctly

An example series of setup commands:

rails new myapp -m http://neo4jrb.io/neo4j/neo4j.rb -O
cd myapp
rake neo4j:install[community-latest]

(continues on next page)

5

https://www.youtube.com/watch?v=bDjbqRL9HcM

Neo4j.rb Documentation, Release 9.2.3

(continued from previous page)

rake neo4j:start

rails generate scaffold User name:string email:string
rails s
open http://localhost:3000/users

See also:

2.1.2 Adding the gem to an existing project

Include in your Gemfile:

for rubygems
gem 'neo4j', '~> 9.0.0' # For example, see https://rubygems.org/gems/neo4j/versions
→˓for the latest versions

In application.rb:

require 'neo4j/railtie'

Note: Neo4j does not interfere with ActiveRecord and both can be used in the same application

If you want the rails generate command to generate Neo4j models by default you can modify application.
rb like so:

class Application < Rails::Application
...

config.generators { |g| g.orm :neo4j }
end

2.1.3 Rails configuration

For both new apps and existing apps there are multiple ways to configure how to connect to Neo4j. You can use
environment variables, the config/neo4j.yml file, or configure via the Rails application config.

For environment variables:

NEO4J_URL=http://localhost:7474
NEO4J_URL=http://user:pass@localhost:7474

NEO4J_TYPE=bolt
NEO4J_URL=bolt://user:pass@localhost:7687

jRuby only
NEO4J_TYPE=embedded
NEO4J_PATH=/path/to/graph.db

For the config/neo4j.yml file:

6 Chapter 2. Setup

Neo4j.rb Documentation, Release 9.2.3

development:
type: http
url: http://localhost:7474

test:
type: http
url: http://localhost:7575

production:
type: http
url: http://neo4j:password@localhost:7000

The railtie provided by the neo4j gem will automatically look for and load this file.

You can also use your Rails configuration. The following example can be put into config/application.rb or
any of your environment configurations (config/environments/(development|test|production).
rb) file:

config.neo4j.session.type = :http
config.neo4j.session.url = 'http://localhost:7474'

Or, for Bolt

config.neo4j.session.type = :bolt
config.neo4j.session.url = 'bolt://localhost:7687'

Or, for embedded in jRuby

config.neo4j.session.type = :embedded
config.neo4j.session.path = '/path/to/graph.db'

Neo4j requires authentication by default but if you install using the built-in rake tasks) authentication is disabled. If
you are using authentication you can configure it like this:

config.neo4j.session.url = 'http://neo4j:password@localhost:7474'

2.1.4 Configuring Faraday (HTTP only)

Faraday is used under the covers to connect to Neo4j. You can use the initialize option to initialize the Faraday
session. Example:

Before 8.0.x of `neo4j` gem
config.neo4j.session.options = {initialize: { ssl: { verify: true }}}

After 8.0.x of `neo4j` gem
Switched to allowing a "configurator" since everything can be done there
config.neo4j.session.options = {

faraday_configurator: proc do |faraday|
The default configurator uses typhoeus (it was

→˓`Faraday::Adapter::NetHttpPersistent` for `neo4j-core` < 7.1.0), so if you override
→˓the configurator you must specify this

faraday.adapter :typhoeus
Optionally you can instead specify another adaptor
faraday.use Faraday::Adapter::NetHttpPersistent

If you need to set options which would normally be the second argument of
→˓`Faraday.new`, you can do the following: (continues on next page)

2.1. Ruby on Rails 7

https://github.com/lostisland/faraday

Neo4j.rb Documentation, Release 9.2.3

(continued from previous page)

faraday.options[:open_timeout] = 5
faraday.options[:timeout] = 65
faraday.options[:ssl] = { verify: true }

end
}

If you are just using the neo4j-core gem, the configurator can also be set via the Neo4j HTTP adaptor. For
example:

require 'neo4j/core/cypher_session/adaptors/http'
faraday_configurator = proc do |faraday|
faraday.adapter :typhoeus

end
require 'neo4j/core/cypher_session/adaptors/http'
http_adaptor = Neo4j::Core::CypherSession::Adaptors::HTTP.new('http://
→˓neo4j:pass@localhost:7474', faraday_configurator: faraday_configurator)

2.2 Any Ruby Project

Include either neo4j or neo4j-core in your Gemfile (neo4j includes neo4j-core as a dependency):

gem 'neo4j', '~> 9.0.0' # For example, see https://rubygems.org/gems/neo4j/versions
→˓for the latest versions
OR
gem 'neo4j-core', '~> 8.0.0' # For example, see https://rubygems.org/gems/neo4j-core/
→˓versions for the latest versions

If using only neo4j-core you can optionally include the rake tasks (documentation) manually in your Rakefile:

Both are optional

To provide tasks to install/start/stop/configure Neo4j
require 'neo4j/rake_tasks'
Comes from the `neo4j-rake_tasks` gem

It was formerly requried that you load migrations via a rake task like this:
load 'neo4j/tasks/migration.rake'
This is NO LONGER required. Migrations are included automatically when requiring
→˓the `neo4j` gem.

If you don’t already have a server you can install one with the rake tasks from neo4j_server.rake. See the (rake
tasks documentation) for details on how to install, configure, and start/stop a Neo4j server in your project directory.

2.2.1 Connection

To open a session to the neo4j server database:

In Ruby

8 Chapter 2. Setup

Neo4j.rb Documentation, Release 9.2.3

In JRuby or MRI, using Neo4j Server mode. When the railtie is included, this
→˓happens automatically.
Neo4j::Session.open(:http)

Embedded mode in JRuby

In jRuby you can access the data in server mode as above. If you want to run the database in “embedded” mode,
however you can configure it like this:

require 'neo4j/core/cypher_session/adaptors/embedded'
neo4j_adaptor = Neo4j::Core::CypherSession::Adaptors::Embedded.new('/file/path/to/
→˓graph.db')
neo4j_session = Neo4j::Core::CypherSession.new(neo4j_adaptor)

Embedded mode means that Neo4j is running inside your jRuby process. This allows for direct access to the Neo4j
Java APIs for faster and more direct querying.

Using the neo4j gem (ActiveNode and ActiveRel) without Rails

To define your own session for the neo4j gem you create a Neo4j::Core::CypherSession object and es-
tablish it as the current session for the neo4j gem with the ActiveBase module (this is done automatically in
Rails):

require 'neo4j/core/cypher_session/adaptors/http'
neo4j_adaptor = Neo4j::Core::CypherSession::Adaptors::HTTP.new('http://
→˓user:pass@host:7474')
Neo4j::ActiveBase.on_establish_session { Neo4j::Core::CypherSession.new(neo4j_
→˓adaptor) }

You could instead use the following, but on_establish_session will establish a new session for each thread for
thread-safety and thus the above is recommended in general unless you know what you are doing:

Neo4j::ActiveBase.current_session = Neo4j::Core::CypherSession.new(neo4j_adaptor)

2.3 What if I’m integrating with a pre-existing Neo4j database?

When trying to get the neo4j gem to integrate with a pre-existing Neo4j database instance (common in cases of
migrating data from a legacy SQL database into a Neo4j-powered rails app), remember that every ActiveNode
model is required to have an ID property with a unique constraint upon it, and that unique ID property will default
to uuid unless you override it to use a different ID property.

This commonly leads to getting a Neo4j::DeprecatedSchemaDefinitionError in Rails when attempting
to access a node populated into a Neo4j database directly via Cypher (i.e. when Rails didn’t create the node itself). To
solve or avoid this problem, be certain to define and constrain as unique a uuid property (or whatever other property
you want Rails to treat as the unique ID property) in Cypher when loading the legacy data or use the methods discussed
in Unique IDs.

2.4 Heroku

Add a Neo4j db to your application:

2.3. What if I’m integrating with a pre-existing Neo4j database? 9

Neo4j.rb Documentation, Release 9.2.3

To use GrapheneDB:
heroku addons:create graphenedb

To use Graph Story:
heroku addons:create graphstory

See also:

GrapheneDB https://devcenter.heroku.com/articles/graphenedb For plans: https://addons.heroku.com/graphenedb

Graph Story https://devcenter.heroku.com/articles/graphstory For plans: https://addons.heroku.com/graphstory

10 Chapter 2. Setup

https://devcenter.heroku.com/articles/graphenedb
https://addons.heroku.com/graphenedb
https://devcenter.heroku.com/articles/graphstory
https://addons.heroku.com/graphstory

CHAPTER 3

Upgrade Guide

This guide outlines changes to major version of the Neo4j.rb gems. For more detail about version changes, see the
neo4j gem CHANGELOG and the neo4j-core gem CHANGELOG.

Note that starting with version 9.0 of the neo4j gem and version 8.0 of the neo4j-core gem, a new practice has
been enacted to release a new major / minor change in accordance with Semantic Versioning as soon as it is warranted.
While older versions followed semantic versioning, they would contain more changes rolled up into a single version.

This upgrade guide does not cover changes before version 8.0 of the neo4j gem and version 7.0 of the neo4j-core
gem. Changes in previous versions weren’t as significant and are covered in the CHANGELOG files for the respective
projects.

3.1 The neo4j gem from 8.x to 9.x

The enum functionality for ActiveNode and ActiveRel has been changed to be case-insensitive by default.

3.2 The neo4j-core gem from 8.x to 9.x

The neo4j-rake_tasks gem is no longer a dependency of the neo4j-core gem (which is, in turn, a dependency
of the neo4j gem). To use the rake tasks, you will need to specify the neo4j-rake_tasks gem yourself.

3.3 The neo4j gem from 7.x to 8.x and the neo4j-core gem from 6.x
to 7.x

Version 8.0 of the neo4j gem and version 7.0 of the neo4j-core gem introduce the most significant change to
the Neo4j.rb project since version 3.0 when we introduced support for the HTTP protocol. With this update comes a
number of breaking changes which will be outlined on this page

11

https://github.com/neo4jrb/neo4j/blob/master/CHANGELOG.md
https://github.com/neo4jrb/neo4j-core/blob/master/CHANGELOG.md
http://semver.org/

Neo4j.rb Documentation, Release 9.2.3

3.3.1 What has changed

The Neo4j.rb project was origionally created just to support accessing Neo4j’s embedded mode Java APIs via jRuby.
In version 3.0 HTTP support was introduced, but the resulting code has been showing it’s age. An entirely new API
has been created in the neo4j-core gem. The goal of this new API is only to support making Cypher queries to
Neo4j either via HTTP, Bolt (Neo4j 3.0’s new binary protocol), or embedded mode in jRuby. The old code is still
around to support connecting to Neo4j via it’s Java APIs, but we would like to later replace it with something simpler
(perhaps in another gem).

The neo4j gem (which provides the ActiveNode and ActiveRel modules) has been refactored to use the new
API in neo4j-core. Because of this if you are using ActiveNode/ActiveRel not much should change.

Before upgrading, the first thing that you should do is to upgrade to the latest 7.1.x version of the neo4j gem and
the latest 6.1.x version of the neo4j-core gem. The upgrade from any previous gem > 3.0 should not be too
difficult, but we are always happy to help on Gitter or Stackoverflow if you are having trouble

3.3.2 The neo4j-core gem

If you are using the neo4j-core gem without the neo4j gem, you should be able to continue using it as you have
previously. It is recommended, however, that you refactor your code to use the new API. Some advantages of the new
API:

• The new binary protocol (“Bolt”) is supported

• You can make multiple queries at a time

• The interface is simpler

• Node and relationship objects don’t change depending on the underlying query mechanism
(Bolt/HTTP/embedded)

• Path objects are now returned

One thing to note is that Node and Relationship objects in the new API are, by design, simple objects. In the old API
you could get relationships and other information by calling methods on node or relationship objects. In the new API
you must create Cypher queries for all data access.

The new API

To make a new session, you must first create an adaptor object and then provide it to the session new method:

require 'neo4j/core/cypher_session/adaptors/http'
neo4j_adaptor = Neo4j::Core::CypherSession::Adaptors::HTTP.new('http://
→˓user:pass@host:port', options)
or
require 'neo4j/core/cypher_session/adaptors/bolt'
neo4j_adaptor = Neo4j::Core::CypherSession::Adaptors::Bolt.new('bolt://
→˓user:pass@host:port', options)
or
require 'neo4j/core/cypher_session/adaptors/embedded'
neo4j_adaptor = Neo4j::Core::CypherSession::Adaptors::Embedded.new('path/to/db',
→˓options)

neo4j_session = Neo4j::Core::CypherSession.new(neo4j_adaptor)

With your session object, you can make queries in a number of different ways:

12 Chapter 3. Upgrade Guide

https://gitter.im/neo4jrb/neo4j
http://stackoverflow.com/questions/ask?tags=neo4j.rb+neo4j+ruby

Neo4j.rb Documentation, Release 9.2.3

Basic query
neo4j_session.query('MATCH (n) RETURN n LIMIT 10')

Query with parameters
neo4j_session.query('MATCH (n) RETURN n LIMIT {limit}', limit: 10)

Or via the Neo4j::Core::Query class

query_obj = Neo4j::Core::Query.new.match(:n).return(:n).limit(10)

neo4j_session.query(query_obj)

Making multiple queries with one request is supported with the HTTP Adaptor:

results = neo4j_session.queries do
append 'MATCH (n:Foo) RETURN n LIMIT 10'
append 'MATCH (n:Bar) RETURN n LIMIT 5'

end

results[0] # results of first query
results[1] # results of second query

When doing batched queries, there is also a shortcut for getting a new Neo4j::Core::Query:

results = neo4j_session.queries do
append query.match(:n).return(:n).limit(10)

end

results[0] # result

With your session object, you can wrap multiple queries inside a transaction like so:

neo4j_session.transaction do |tx|
do stuff
tx.mark_failed

end

3.3.3 The neo4j gem

Sessions

In 7.0 of the neo4j-core gem, the new API doesn’t have the concept of a “current” session in the way that the old
API did. If you are using neo4j-core, you must keep track of whatever sessions that you open yourself. In version
8.0 of the neo4j gem, however, there is a concept of a current session for your models. Previously you might have
used:

Neo4j::Session.current

If you are using version 8.0 of the neo4j gem, that will be accessible, but neo4j is no longer using that old API to
have a session with Neo4j. Instead you might use:

Neo4j::ActiveBase.current_session

3.3. The neo4j gem from 7.x to 8.x and the neo4j-core gem from 6.x to 7.x 13

Neo4j.rb Documentation, Release 9.2.3

Transactions

Because of the changes to the current session API in the neo4j gem, the transactions API has also changed. Previ-
ously you might have created a transaction like so:

Neo4j::Transaction.run do |tx|
do stuff
tx.mark_failed

end

Now, you now interact with transactions through Neo4j::ActiveBase like so:

Neo4j::ActiveBase.run_transaction do |tx|
do stuff
tx.mark_failed

end

See also:

server_db

In previous version of the neo4j gem to connect to Neo4j via HTTP you would define the value server_db in the
neo4j.yml file, the NEO4J_TYPE environment variable, or a Rails configuration (config.neo4j.session.
type). This should now be replaced and either bolt or http should be used depending on which connection type
you need.

Also, instead of using session_type, session_url, session_path, and session_options, you should use session.type,
session.url, session.path, and session.options respectively.

Some examples:

config/neo4j.yml
Before
development:

type: server_db
url: http://localhost:7474

After
development:

type: http # or bolt
url: http://localhost:7474

Rails config/application.rb, config/environments/development.rb, etc...

Before
config.neo4j.session_type = :server_db
config.neo4j.session_url = 'http://localhost:7474'

After
config.neo4j.session.type = :http # or :bolt
config.neo4j.session.url = 'http://localhost:7474'

Also, there was a slight change in the way that you configure the internal faraday adaptor of the neo4j-core gem:

Before 8.0.x of `neo4j` gem
config.neo4j.session_options = {initialize: { ssl: { verify: true }}}

(continues on next page)

14 Chapter 3. Upgrade Guide

Neo4j.rb Documentation, Release 9.2.3

(continued from previous page)

After 8.0.x of `neo4j` gem
config.neo4j.session.options = {faraday_options: { ssl: { verify: true }}}

Outside of Rails

The neo4j gem will automatically set up a number of things with it’s railtie. If you aren’t using Rails you may
need to set some things up yourself and some of the details have changed with version 8.0 of the neo4j gem.

Previously a connection with be established with Neo4j::Session.open and the default session from
neo4j-core would be used. In version 7.0 of the neo4j-core gem, no such default session exists for the new
API so you will need to establish a session to use the ActiveNode and ActiveRel modules like so:

adaptor = Neo4j::Core::CypherSession::Adaptors::HTTP.new('http://
→˓username:password@localhost:7474', wrap_level: :proc)

session = Neo4j::Core::CypherSession.new(adaptor)

Neo4j::ActiveBase.current_session = session

Or skip setting up the session yourself:

Neo4j::ActiveBase.current_adaptor = adaptor

If you are using multiple threads, you should use the on_establish_session method to define how to setup your session.
The current_session is stored on a per-thread basis and if you spawn a new thread, this block will be used to establish
the session for that thread:

Neo4j::ActiveBase.on_establish_session do
adaptor = Neo4j::Core::CypherSession::Adaptors::HTTP.new('http://

→˓username:password@localhost:7474', wrap_level: :proc)

Neo4j::Core::CypherSession.new(adaptor)
end

Migrations:

If you would like to use the migrations provided by the neo4j outside of Rails you can include this in your
Rakefile:

load 'neo4j/tasks/migration.rake'

Indexes and Constraints

In previous versions of the neo4j gem, ActiveNode models would allow you to define indexes and constraints
as part of the model. While this was a convenient feature, it would often cause problems because Neo4j does not
allow schema changes to happen in the same transaction as data changes. This would often happen when using
ActiveNode because constraints and indexes would be automatically created when your model was first loaded,
which may very well be in the middle of a transaction.

In version 8.0 of the neo4j gem, you must now create indexes and constraints separately. You can do this yourself,
but version 8.0 provides fully featured migration functionality to make this easy (see the Migrations section).

3.3. The neo4j gem from 7.x to 8.x and the neo4j-core gem from 6.x to 7.x 15

Neo4j.rb Documentation, Release 9.2.3

If you still have indexes or constraints defined, the gem will check to see if those indexes or constraints exist. If they
don’t, an exception will be raised with command that you can run to generate the appropriate migrations. If they do
exist, a warning will be given to remove the index / constraint definitions.

Also note that all ActiveNode models must have an id_property defined (which is the uuid property by
default). These constraints will also be checked and an exception will be raised if they do not exist.

Migrations

Version 8.0 of the neo4j gem now includes a fully featured migration system similar to the one provided by
ActiveRecord. See the documentation for details.

neo_id id_properties

In version 8.0 of the neo4j gem support was added to allow for definining the internal Neo4j ID as the
id_property for a model like so:

id_property :neo_id

Warning: Use of neo_id as a perminent identifier should be done with caution. Neo4j can recycle IDs from
deleted nodes meaning that URLs or other external references using that ID will reference the wrong item. Neo4j
may be updated in the future to support internal IDs which aren’t recycled, but for now use at your own risk

Exceptions

With the new API comes some new exceptions which are raised. With the new adaptor API errors are more dependable
across different ways of connecting to Neo4j.

Old Exception New Exception
Neo4j::Server::Resource::ServerException Neo4j::Core::CypherSession::ConnectionFailedError
Neo4j::Server::CypherResponse::ConstraintViolationErrorNeo4j::Core::CypherSession::SchemaErrors::ConstraintValidationFailedError
Neo4j::Session::CypherError Neo4j::Core::CypherSession::CypherError
? ConstraintAlreadyExistsError
? IndexAlreadyExistsError

16 Chapter 3. Upgrade Guide

CHAPTER 4

Rake Tasks

The neo4j-rake_tasks gem includes some rake tasks which make it easy to install and manage a Neo4j server
in the same directory as your Ruby project.

Warning: The neo4j-rake_tasks gem was previously brought in as a dependency of the neo4j-core gem
(which was in turn a requirement of the neo4j gem). This meant that users of the neo4j and neo4j-core
gems would have these rake tasks regardless of the need for them. While this was useful for saving a step in a
tutorial introducing Neo4j in Ruby, it led to confusion about the rake tasks and sometimes led people to use the rake
tasks in production (see below). Starting in version 8.0.0 of the neo4j-core gem, the neo4j-rake_tasks
gem must be explicitly required if it is needed.

Warning: Setting up a Neo4j server with the rake tasks below will disable authentication and is thus most useful
for development and test environments. Note that installing Neo4j on production can be as straightforward as
downloading, unzipping, and starting your server.

Note: If you are using zsh, you need to prefix any rake tasks with arguments with the noglob command, e.g. $
noglob bundle exec rake neo4j:install[community-latest].

neo4j:generate_schema_migration

Arguments Either the string index or the string constraint

The Neo4j label

The property

Example: rake neo4j:generate_schema_migration[constraint,Person,uuid]

Creates a migration which force creates either a constraint or an index in the database for the given label /
property pair. When you create a model the gem will require that a migration be created and run and it will give
you the appropriate rake task in the exception.

17

Neo4j.rb Documentation, Release 9.2.3

neo4j:install Arguments: version and environment (environment default is development)

Example: rake neo4j:install[community-latest,development]

Downloads and installs Neo4j into $PROJECT_DIR/db/neo4j/<environment>/

For the version argument you can specify either community-latest/enterprise-latest to get
the most up-to-date stable version or you can specify a specific version with the format community-x.x.
x/enterprise-x.x.x

A custom download URL can be specified using the NEO4J_DIST environment variable like
NEO4J_DIST=http://dist.neo4j.org/neo4j-VERSION-unix.tar.gz

neo4j:config Arguments: environment and port

Example: rake neo4j:config[development,7100]

Configure the port which Neo4j runs on. This affects the HTTP REST interface and the web console address.
This also sets the HTTPS port to the specified port minus one (so if you specify 7100 then the HTTP port will
be 7099)

neo4j:start Arguments: environment

Example: rake neo4j:start[development]

Start the Neo4j server

Assuming everything is ok, point your browser to http://localhost:7474 and the Neo4j web console should load
up.

neo4j:start Arguments: environment

Example: rake neo4j:shell[development]

Open a Neo4j shell console (REPL shell).

If Neo4j isn’t already started this task will first start the server and shut it down after the shell is exited.

neo4j:start_no_wait Arguments: environment

Example: rake neo4j:start_no_wait[development]

Start the Neo4j server with the start-no-wait command

neo4j:stop Arguments: environment

Example: rake neo4j:stop[development]

Stop the Neo4j server

neo4j:restart Arguments: environment

Example: rake neo4j:restart[development]

Restart the Neo4j server

18 Chapter 4. Rake Tasks

http://localhost:7474

CHAPTER 5

ActiveNode

ActiveNode is the ActiveRecord replacement module for Rails. Its syntax should be familiar for ActiveRecord users
but has some unique qualities.

To use ActiveNode, include Neo4j::ActiveNode in a class.

class Post
include Neo4j::ActiveNode

end

5.1 Properties

All properties for Neo4j::ActiveNode objects must be declared (unlike neo4j-core nodes). Properties are declared
using the property method which is the same as attribute from the active_attr gem.

Example:

class Post
include Neo4j::ActiveNode
property :title
property :text, default: 'bla bla bla'
property :score, type: Integer, default: 0

validates :title, :presence => true
validates :score, numericality: { only_integer: true }

before_save do
self.score = score * 100

end

has_n :friends
end

See the Properties section for additional information.

19

Neo4j.rb Documentation, Release 9.2.3

See also:

5.1.1 Labels

By default ActiveNode takes your model class’ name and uses it directly as the Neo4j label for the nodes it repre-
sents. This even includes using the module namespace of the class. That is, the class MyClass in the MyModule
module will have the label MyModule::MyClass. To change this behavior, see the module_handling configuration
variable.

Additionally you can change the name of a particular ActiveNode by using mapped_label_name like so:

class Post
include Neo4j::ActiveNode

self.mapped_label_name = 'BlogPost'
end

5.1.2 Indexes and Constraints

To declare a index on a constraint on a property, you should create a migration. See Migrations

Note: In previous versions of ActiveNode indexes and constraints were defined on properties directly on the
models and were automatically created. This turned out to be not safe, and migrations are now required to create
indexes and migrations.

5.1.3 Labels

The class name maps directly to the label. In the following case both the class name and label are Post

class Post
include Neo4j::ActiveNode

end

If you want to specify a different label for your class you can use mapped_label_name:

class Post
include Neo4j::ActiveNode

self.mapped_label_name = 'BlogPost'
end

If you would like to use multiple labels you can use class inheritance. In the following case object created with the
Article model would have both Post and Article labels. When querying Article both labels are required on the nodes
as well.

class Post
include Neo4j::ActiveNode

end

class Article < Post
end

20 Chapter 5. ActiveNode

Neo4j.rb Documentation, Release 9.2.3

5.1.4 Serialization

Pass a property name as a symbol to the serialize method if you want to save JSON serializable data (strings, numbers,
hash, array, array with mixed object types*, etc.) to the database.

class Student
include Neo4j::ActiveNode

property :links

serialize :links
end

s = Student.create(links: { neo4j: 'http://www.neo4j.org', neotech: 'http://www.
→˓neotechnology.com' })
s.links
=> {"neo4j"=>"http://www.neo4j.org", "neotech"=>"http://www.neotechnology.com"}
s.links.class
=> Hash

Neo4j.rb serializes as JSON by default but pass it the constant Hash as a second parameter to serialize as YAML.
Those coming from ActiveRecord will recognize this behavior, though Rails serializes as YAML by default.

Neo4j allows you to save Ruby arrays to undefined or String types but their contents need to all be of the same type.
You can do user.stuff = [1, 2, 3] or user.stuff = [“beer, “pizza”, “doritos”] but not user.stuff = [1, “beer”, “pizza”].
If you wanted to do that, you could call serialize on your property in the model.

5.1.5 Enums

You can declare special properties that maps an integer value in the database with a set of keywords, like
ActiveRecord::Enum

class Media
include Neo4j::ActiveNode

enum type: [:image, :video, :unknown]
end

media = Media.create(type: :video)
media.type
=> :video
media.image!
media.image?
=> true

For every keyword specified, a couple of methods are defined to set or check the current enum state (In the example:
image?, image!, video?, . . .).

With options _prefix and _suffix, you can define how this methods are generating, by adding a prefix or a suffix.

With _prefix: :something, something will be added before every method name.

Media.enum type: [:image, :video, :unknown], _prefix: :something
media.something_image?
media.something_image!

With _suffix: true, instead, the name of the enum is added in the bottom of all methods:

5.1. Properties 21

Neo4j.rb Documentation, Release 9.2.3

Media.enum type: [:image, :video, :unknown], _suffix: true
media.image_type?
media.image_type!

You can find elements by enum value by using a set of scope that enum defines:

Media.image
=> CYPHER: "MATCH (result_media:`Media`) WHERE (result_media.type = 0)"
Media.video
=> CYPHER: "MATCH (result_media:`Media`) WHERE (result_media.type = 1)"

Or by using where:

Media.where(type: :image)
=> CYPHER: "MATCH (result_media:`Media`) WHERE (result_media.type = 0)"
Media.where(type: [Media.types[:image], Media.types[:video]])
=> CYPHER: "MATCH (result_media:`StoredFile`) WHERE (result_media.type IN [0, 1])"
Media.as(:m).where('m.type <> ?', Media.types[:image])
=> CYPHER: "MATCH (result_media:`StoredFile`) WHERE (result_media.type <> 0)"

By default, every enum property will require you to add an associated index to improve query performance. If you
want to disable this, simply pass _index: false to enum:

class Media
include Neo4j::ActiveNode

enum type: [:image, :video, :unknown], _index: false
end

Sometimes it is desirable to have a default value for an enum property. To acheive this, you can simply pass the
_default option when defining the enum:

class Media
include Neo4j::ActiveNode

enum type: [:image, :video, :unknown], _default: :video
end

By default, enum setters are case insensitive (in the example below, Media.create(type: 'VIDEO').type
== :video). If you wish to disable this for a specific enum, pass the _case_sensitive: true option. if
you wish to change the global default for _case_sensitive to true, use Neo4jrb’s enums_case_sensitive
config option (detailed in the configuration-variables section).

class Media
include Neo4j::ActiveNode

enum type: [:image, :video, :unknown], _case_sensitive: false
end

5.2 Scopes

Scopes in ActiveNode are a way of defining a subset of nodes for a particular ActiveNode model. This could be
as simple as:

22 Chapter 5. ActiveNode

Neo4j.rb Documentation, Release 9.2.3

class Person
include Neo4j::ActiveNode

scope :minors, -> { where(age: 0..17) }
end

This allows you chain a description of the defined set of nodes which can make your code easier to read such as
Person.minors or Car.all.owners.minors. While scopes are very useful in encapsulating logic, this scope
doesn’t neccessarily save us much beyond simply using Person.where(age: 0..17) directly. Scopes become
much more useful when they encapsulate more complicated logic:

class Person
include Neo4j::ActiveNode

scope :eligible, -> { where_not(age: 0..17).where(completed_form: true) }
end

And because you can chain scopes together, this can make your query chains very composable and expressive like:

Getting all hybrid convertables owned by recently active eligible people
Person.eligible.where(recently_active: true).cars.hybrids.convertables

While that’s useful in of itself, sometimes you want to be able to create more dynamic scopes by passing arguments.
This is supported like so:

class Person
include Neo4j::ActiveNode

scope :around_age_of, -> (age) { where(age: (age - 5..age + 5)) }
end

Which can be used as:
Person.around_age_of(20)
or
Car.all.owners.around_age_of(20)

All of the examples so far have used the Ruby API for automatically generating Cypher. While it is often possible to
get by with this, it is sometimes not possible to create a scope without defining it with a Cypher string. For example,
if you need to use OR:

class Person
include Neo4j::ActiveNode

scope :non_teenagers, -> { where("#{identity}.age < 13 OR #{identity}.age >= 18") }
end

Since a Cypher query can have a number of different nodes and relationships that it is referencing, we need to be able
to refer to the current node’s variable. This is why we call the identity method, which will give the variable which
is being used in the query chain on which the scope is being called.

Warning: Since the identity comes from whatever was specified as the cypher variable for the node on the
other side of the association. If the cypher variables were generated from an untrusted source (like from a user of
your app) you may leave yourself open to a Cypher injection vulnerability. It is not recommended to generate your
Cypher variables based on user input!

5.2. Scopes 23

Neo4j.rb Documentation, Release 9.2.3

Finally, the scope method just gives us a convenient way of having a method on our model class which returns
another query chain object. Sometimes to make even more complex logic or even to just return a simple result which
can be called on a query chain but which doesn’t continue the chain, we can create a class method ourselves:

class Person
include Neo4j::ActiveNode

def self.average_age
all(:person).pluck('avg(person.age)').first

end
end

So if you wanted to find the average age of all eligible people, you could call Person.eligible.average_age
and you would be given a single number.

To implement a more complicated scope with a class method you simply need to return a query chain at the end.

5.3 Wrapping

When loading a node from the database there is a process to determine which ActiveNode model to choose for
wrapping the node. If nothing is configured on your part then when a node is created labels will be saved representing
all of the classes in the hierarchy.

That is, if you have a Teacher class inheriting from a Person model, then creating a Person object will create a
node in the database with a Person label, but creating a Teacher object will create a node with both the Teacher
and Person labels.

If there is a value for the property defined by class_name_property then the value of that property will be used directly
to determine the class to wrap the node in.

5.4 Callbacks

Implements like Active Records the following callback hooks:

• initialize

• validation

• find

• save

• create

• update

• destroy

5.5 created_at, updated_at

class Blog
include Neo4j::ActiveNode

include Neo4j::Timestamps # will give model created_at and updated_at timestamps

(continues on next page)

24 Chapter 5. ActiveNode

Neo4j.rb Documentation, Release 9.2.3

(continued from previous page)

include Neo4j::Timestamps::Created # will give model created_at timestamp
include Neo4j::Timestamps::Updated # will give model updated_at timestamp

end

5.6 Validation

Support the Active Model validation, such as:

validates :age, presence: true validates_uniqueness_of :name, :scope => :adult

5.7 id property (primary key)

Unique IDs are automatically created for all nodes using SecureRandom::uuid. See UniqueIDs for details.

5.8 Associations

has_many and has_one associations can also be defined on ActiveNode models to make querying and creating
relationships easier.

class Post
include Neo4j::ActiveNode
has_many :in, :comments, origin: :post
has_one :out, :author, type: :author, model_class: :Person

end

class Comment
include Neo4j::ActiveNode
has_one :out, :post, type: :post
has_one :out, :author, type: :author, model_class: :Person

end

class Person
include Neo4j::ActiveNode
has_many :in, :posts, origin: :author
has_many :in, :comments, origin: :author

Match all incoming relationship types
has_many :in, :written_things, type: false, model_class: [:Post, :Comment]

or if you want to match all model classes:
has_many :in, :written_things, type: false, model_class: false

or if you watch to match Posts and Comments on all relationships (in and out)
has_many :both, :written_things, type: false, model_class: [:Post, :Comment]

end

You can query associations:

5.6. Validation 25

Neo4j.rb Documentation, Release 9.2.3

post.comments.to_a # Array of comments
comment.post # Post object
comment.post.comments # Original comment and all of it's siblings. Makes just
→˓one query
post.comments.author.posts # All posts of people who have commented on the post.
→˓Still makes just one query

When querying has_one associations, by default .first will be called on the result. This makes the result non-
chainable if the result is nil. If you want to ensure a chainable result, you can call has_one with a chainable:
true argument.

comment.post # Post object
comment.post(chainable: true) # Association proxy object wrapping post

You can create associations

post.comments = [comment1, comment2] # Removes all existing relationships
post.comments << comment3 # Creates new relationship

comment.post = post1 # Removes all existing relationships

5.8.1 Updating Associations

You can update attributes for objects of an association like this:

post.comments.update_all(flagged: true)
post.comments.where(text: /.*cats.*/).update_all(flagged: true)

You can even update properties of the relationships for the associations like so:

post.comments.update_all_rels(flagged: true)
post.comments.where(text: /.*cats.*/).update_all_rels(flagged: true)
Or to filter on the relationships
post.comments.where(flagged: nil).update_all_rels(flagged: true)

5.8.2 Polymorphic Associations

has_one or has_many associations which target multiple model_class are called polymorphic associa-
tions. This is done by setting model_class: false or model_class: [:ModelOne, :ModelTwo,
:Etc]. In our example, the Person class has a polymorphic association written_things

class Person
include Neo4j::ActiveNode

Match all incoming relationship types
has_many :in, :written_things, type: :WROTE, model_class: [:Post, :Comment]

end

You can’t perform standard association chains on a polymorphic association. For example, while you can call post.
comments.author.written_things, you cannot call post.comments.author.written_things.
post.comments (an exception will be raised). In this example, the return of .written_things can be either a
Post object or a Comment object, any method you called on an association made up of them both could have a dif-
ferent meaning for the Post object vs the Comment object. So how can you execute post.comments.author.
written_things.post.comments? This is where .query_as and .proxy_as come to the rescue! While

26 Chapter 5. ActiveNode

Neo4j.rb Documentation, Release 9.2.3

ActiveNode doesn’t know how to handle the .post call on .written_things, you know that the path
from the return of .written_things to Post nodes is (written_thing)-[:post]->(post:Post).
To help ActiveNode out, convert the AssociationProxy‘ object returned by post.comments.author.
written_things into a Query object with .query_as(), then manually specify the path of .post. Like
so:

post.comments.author.written_things.query_as(:written_thing).match("(written_thing)-
→˓[:post]->(post:Post)")

It’s worth noting that the object returned by this chain is now a Query object, meaning that if you wish to get the
result ((post:Post)), you’ll need to .pluck(:post) it. However, we don’t want to get the result yet. Instead,
we wish to perform further queries. Because the end of the chain is now a Query, we could continue to manually
describe the path to the nodes we want using the Query API of .match, .where, .return, etc. For example, to
get post.comments.author.written_things.post.comments we could

post.comments.author.written_things.query_as(:written_thing).match("(written_thing)-
→˓[:post]->(post:Post)").match("(post)<-[:post]-(comment:Comment)").pluck(:comment)

But this isn’t ideal. It would be nice to make use of ActiveNode’s association chains to complete our query. We
know that the return of post.comments.author.written_things.query_as(:written_thing).
match("(written_thing)-[:post]->(post:Post)") is a Post object, after all. To allow for associ-
ation chains in this circumstance, .proxy_as() comes to the rescue! If we know that a Query will return a specific
model class, proxy_as allows us to tell Neo4jrb this, and begin association chaining from that point. For example

post.comments.author.written_things.query_as(:written_thing).match("(written_thing)-
→˓[:post]->(post:Post)").proxy_as(Post, :post).comments.author

See also:

#query_as http://www.rubydoc.info/gems/neo4j/Neo4j/ActiveNode/Query/QueryProxy#query_as-instance_method
and #proxy_as http://www.rubydoc.info/gems/neo4j/Neo4j/Core/Query#proxy_as-instance_method

5.8.3 Dependent Associations

Similar to ActiveRecord, you can specify four dependent options when declaring an association.

class Route
include Neo4j::ActiveNode
has_many :out, :stops, type: :STOPPING_AT, dependent: :delete_orphans

end

The available options are:

• :delete, which will delete all associated records in Cypher. Callbacks will not be called. This is the fastest
method.

• :destroy, which will call each on the association and then destroy on each related object. Callbacks will
be called. Since this happens in Ruby, it can be a very expensive procedure, so use it carefully.

• :delete_orphans, which will delete only the associated records that have no other relationships of the same
type.

• :destroy_orphans, same as above, but it takes place in Ruby.

The two orphan-destruction options are unique to Neo4j.rb. As an example of when you’d use them, imagine you are
modeling tours, routes, and stops along those routes. A tour can have multiple routes, a route can have multiple stops,
a stop can be in multiple routes but must have at least one. When a route is destroyed, :delete_orphans would
delete only those related stops that have no other routes.

5.8. Associations 27

http://www.rubydoc.info/gems/neo4j/Neo4j/ActiveNode/Query/QueryProxy#query_as-instance_method
http://www.rubydoc.info/gems/neo4j/Neo4j/Core/Query#proxy_as-instance_method

Neo4j.rb Documentation, Release 9.2.3

See also:

See also:

#has_many http://www.rubydoc.info/gems/neo4j/Neo4j/ActiveNode/HasN/ClassMethods#has_many-instance_
method and #has_one http://www.rubydoc.info/gems/neo4j/Neo4j/ActiveNode/HasN/ClassMethods#has_
one-instance_method

5.8.4 Association Options

By default, when you call an association ActiveNode will add the model_class labels to the query (as a filter).
For example:

person.friends
=>
MATCH (person125)
WHERE (ID(person125) = {ID_person125})
MATCH (person125)-[rel1:`FRIEND`]->(node3:`Person`)

The exception to this is if model_class: false, in which case MATCH
(person125)-[rel1:`FRIEND`]->(node3). More advanced Neo4j users may prefer to skip adding
labels to the target node, even if model_class != false. This can be accomplished on a case-by-case basis
by calling the association with a labels: false‘ options argument. For example: person.friends(labels:
false).

You can also make labels: false the default settings by creating the association with a labels: false
option. For example:

class Person
has_many :out, :friends, type: :FRIEND, model_class: self, labels: false

end

5.8.5 Creating Unique Relationships

By including the unique option in a has_many or has_one association’s method call, you can change the Cypher
used to create from “CREATE” to “CREATE UNIQUE.”

has_many :out, :friends, type: 'FRIENDS_WITH', model_class: :User, unique: true

Instead of true, you can give one of three different options:

• :none, also used true is given, will not include properties to determine whether ot not to create a unique
relationship. This means that no more than one relationship of the same pairing of nodes, rel type, and direction
will ever be created.

• :all, which will include all set properties in rel creation. This means that if a new relationship will be created
unless all nodes, type, direction, and rel properties are matched.

• {on: [keys]}will use the keys given to determine whether to create a new rel and the remaining properties
will be set afterwards.

5.8.6 Eager Loading

ActiveNode supports eager loading of associations in two ways. The first way is transparent. When you do the
following:

28 Chapter 5. ActiveNode

http://www.rubydoc.info/gems/neo4j/Neo4j/ActiveNode/HasN/ClassMethods#has_many-instance_method
http://www.rubydoc.info/gems/neo4j/Neo4j/ActiveNode/HasN/ClassMethods#has_many-instance_method
http://www.rubydoc.info/gems/neo4j/Neo4j/ActiveNode/HasN/ClassMethods#has_one-instance_method
http://www.rubydoc.info/gems/neo4j/Neo4j/ActiveNode/HasN/ClassMethods#has_one-instance_method

Neo4j.rb Documentation, Release 9.2.3

person.blog_posts.each do |post|
puts post.title
puts "Tags: #{post.tags.map(&:name).join(', ')}"
post.comments.each do |comment|
puts ' ' + comment.title

end
end

Only three Cypher queries will be made:

• One to get the blog posts for the user

• One to get the tags for all of the blog posts

• One to get the comments for all of the blog posts

While three queries isn’t ideal, it is better than the naive approach of one query for every call to an object’s association
(Thanks to DataMapper for the inspiration).

For those times when you need to load all of your data with one Cypher query, however, you can do the following to
give ActiveNode a hint:

person.blog_posts.with_associations(:tags, :comments).each do |post|
puts post.title
puts "Tags: #{post.tags.map(&:name).join(', ')}"
post.comments.each do |comment|
puts ' ' + comment.title

end
end

All that we did here was add .with_associations(:tags, :comments). In addition to getting all of the
blog posts, this will generate a Cypher query which uses the Cypher COLLECT() function to efficiently roll-up all of
the associated objects. ActiveNode then automatically structures them into a nested set of ActiveNode objects for you.

5.8. Associations 29

http://datamapper.org/why.html

Neo4j.rb Documentation, Release 9.2.3

30 Chapter 5. ActiveNode

CHAPTER 6

ActiveRel

ActiveRel is a module in the neo4j gem which wraps relationships. ActiveRel objects share most of their behavior
with ActiveNode objects. ActiveRel is purely optional and offers advanced functionality for complex relationships.

6.1 When to Use?

It is not always necessary to use ActiveRel models but if you have the need for validation, callback, or working with
properties on unpersisted relationships, it is the solution.

Note that in Neo4j it isn’t possible to access relationships except by first accessing a node. Thus ActiveRel doesn’t
implement a uuid property like ActiveNode.

6.2 Setup

ActiveRel model definitions have three requirements:

• include Neo4j::ActiveRel

• Call from_class with a symbol/string referring to an ActiveNode model or :any

• Call to_class with a symbol/string referring to an ActiveNode model or :any

See the note on from/to at the end of this page for additional information.

app/models/enrolled_in.rb
class EnrolledIn

include Neo4j::ActiveRel
before_save :do_this

from_class :Student
to_class :Lesson
`type` can be specified, but it is assumed from the model name

(continues on next page)

31

Neo4j.rb Documentation, Release 9.2.3

(continued from previous page)

In this case, without `type`, 'ENROLLED_IN' would be assumed
If you wanted to specify something else:
type 'ENROLLED'

property :since, type: Integer
property :grade, type: Integer
property :notes

validates_presence_of :since

def do_this
#a callback

end
end

Using the `ActiveRel` model in `ActiveNode` models:
app/models/student.rb
class Student

include Neo4j::ActiveNode

has_many :out, :lessons, rel_class: :EnrolledIn
end

app/models/lesson.rb
class Lesson

include Neo4j::ActiveNode

has_many :in, :students, rel_class: :EnrolledIn
end

See also:

6.3 Relationship Creation

6.3.1 From an ActiveRel Model

Once setup, ActiveRel models follow the same rules as ActiveNode in regard to properties. Declare them to create
setter/getter methods. You can also set created_at or updated_at for automatic timestamps.

ActiveRel instances require related nodes before they can be saved. Set these using the from_node and to_node
methods.

rel = EnrolledIn.new
rel.from_node = student
rel.to_node = lesson

You can pass these as parameters when calling new or create if you so choose.

rel = EnrolledIn.new(from_node: student, to_node: lesson)
#or
rel = EnrolledIn.create(from_node: student, to_node: lesson)

32 Chapter 6. ActiveRel

Neo4j.rb Documentation, Release 9.2.3

6.3.2 From a has_many or has_one association

Add the :rel_class option to an association with the name of an ActiveRel model. Association creation and querying
will use this rel class, verifying classes, adding defaults, and performing callbacks.

class Student
include Neo4j::ActiveNode
has_many :out, :lessons, rel_class: :EnrolledIn

end

6.3.3 Creating Unique Relationships

The creates_unique class method will change the Cypher generated during rel creation from CREATE to
CREATE UNIQUE. It may be called with one optional argument of the following:

• :none, also used when no argument is given, will not include properties to determine whether ot not to create
a unique relationship. This means that no more than one relationship of the same pairing of nodes, rel type, and
direction will ever be created.

• :all, which will include all set properties in rel creation. This means that if a new relationship will be created
unless all nodes, type, direction, and rel properties are matched.

• {on: [keys]}will use the keys given to determine whether to create a new rel and the remaining properties
will be set afterwards.

6.4 Query and Loading existing relationships

Like nodes, you can load relationships a few different ways.

6.4.1 :each_rel, :each_with_rel, or :pluck methods

Any of these methods can return relationship objects.

Student.first.lessons.each_rel { |r| }
Student.first.lessons.each_with_rel { |node, rel| }
Student.first.query_as(:s).match('(s)-[rel1:\`enrolled_in\`]->(n2)').pluck(:rel1)

These are available as both class or instance methods. Because both each_rel and each_with_rel return enumerables
when a block is skipped, you can take advantage of the full suite of enumerable methods:

Lesson.first.students.each_with_rel.select{ |n, r| r.grade > 85 }

Be aware that select would be performed in Ruby after a Cypher query is performed. The example above performs a
Cypher query that matches all students with relationships of type enrolled_in to Lesson.first, then it would call select
on that.

6.5 Accessing related nodes

Once a relationship has been wrapped, you can access the related nodes using from_node and to_node instance meth-
ods. Note that these cannot be changed once a relationship has been created.

6.4. Query and Loading existing relationships 33

Neo4j.rb Documentation, Release 9.2.3

student = Student.first
lesson = Lesson.first
rel = EnrolledIn.create(from_node: student, to_node: lesson, since: 2014)
rel.from_node
=> #<Neo4j::ActiveRel::RelatedNode:0x00000104589d78 @node=#<Student property: 'value'>
→˓>
rel.to_node
=> #<Neo4j::ActiveRel::RelatedNode:0x00000104589d50 @node=#<Lesson property: 'value'>>

As you can see, this returns objects of type RelatedNode which delegate to the nodes. This allows for lazy loading
when a relationship is returned in the future: the nodes are not loaded until you interact with them, which is beneficial
with something like each_with_rel where you already have access to the nodes and do not want superfluous calls to
the server.

6.6 Advanced Usage

6.6.1 Separation of Relationship Logic

ActiveRel really shines when you have multiple associations that share a relationship type. You can use an ActiveRel
model to separate the relationship logic and just let the node models be concerned with the labels of related objects.

class User
include Neo4j::ActiveNode
property :managed_stats, type: Integer #store the number of managed objects to

→˓improve performance

has_many :out, :managed_lessons, model_class: :Lesson, rel_class: :ManagedRel
has_many :out, :managed_teachers, model_class: :Teacher, rel_class: :ManagedRel
has_many :out, :managed_events, model_class: :Event, rel_class: :ManagedRel
has_many :out, :managed_objects, model_class: false, rel_class: :ManagedRel

def update_stats
managed_stats += 1
save

end
end

class ManagedRel
include Neo4j::ActiveRel
after_create :update_user_stats
validate :manageable_object
from_class :User
to_class :any
type 'MANAGES'

def update_user_stats
from_node.update_stats

end

def manageable_object
errors.add(:to_node) unless to_node.respond_to?(:managed_by)

end
end

(continues on next page)

34 Chapter 6. ActiveRel

Neo4j.rb Documentation, Release 9.2.3

(continued from previous page)

elsewhere
rel = ManagedRel.new(from_node: user, to_node: any_node)
if rel.save

validation passed, to_node is a manageable object
else

something is wrong
end

6.7 Additional methods

:type instance method, _:type class method: return the relationship type of the model

:_from_class and :_to_class class methods: return the expected classes declared in the model

6.8 Regarding: from and to

:from_node, :to_node, :from_class, and :to_class all have aliases using start and end:
:start_class, :end_class, :start_node, :end_node, :start_node=, :end_node=. This main-
tains consistency with elements of the Neo4j::Core API while offering what may be more natural options for Rails
users.

6.7. Additional methods 35

Neo4j.rb Documentation, Release 9.2.3

36 Chapter 6. ActiveRel

CHAPTER 7

Properties

In classes that mixin the Neo4j::ActiveNode or Neo4j::ActiveRel modules, properties must be declared
using the property class method. It requires a single argument, a symbol that will correspond with the getter and
setter as well as the property in the database.

class Post
include Neo4j::ActiveNode

property :title
end

Two options are also available to both node and relationship models. They are:

• type, to specify the expected class of the stored value in Ruby

• default, a default value to set when the property is nil

Finally, you can serialize properties as JSON with the serialize class method.

In practice, you can put it all together like this:

class Post
include Neo4j::ActiveNode

property :title, type: String, default: 'This ia new post'
property :links

serialize :links
end

You will now be able to set the title property through mass-assignment (Post.new(title: 'My Title'))
or by calling the title= method. You can also give a hash of links ({ homepage: 'http://neo4jrb.io',
twitter: 'https://twitter.com/neo4jrb' }) to the links property and it will be saved as JSON to
the db.

37

Neo4j.rb Documentation, Release 9.2.3

7.1 Validations

The ActiveNode and ActiveRel modules in the neo4j gem are based off of ActiveModel. Because of this
you can use any validations defined by ActiveModel as well as create your own in the same style. For the best docu-
mentation on validations, see the Active Record Validations page. The neo4j gem isn’t based off of ActiveRecord
aside from being inspired by it, but they both use ActiveModel under the covers.

One validation to note in particular is validates_uniqueness_of. Whereas most validations work only on the
model in memory, this validation requires connecting to the database. The neo4j gem implements it’s own version
of validates_uniqueness_of for Neo4j.

7.2 Undeclared Properties

Neo4j, being schemaless as far as the database is concerned, does not require that property keys be defined ahead of
time. As a result, it’s possible (and sometimes desirable) to set properties on the node that are not also defined on the
database. By including the module Neo4j::UndeclaredProperties no exceptions will be thrown if unknown
attributes are passed to selected methods.

class Post
include Neo4j::ActiveNode
include Neo4j::UndeclaredProperties

property :title
end

Post.create(title: 'My Post', secret_val: 123)
post = Post.first
post.secret_val #=> NoMethodError: undefined method `secret_val`
post[:secret_val] #=> 123...

In this case, simply adding the secret_val property to your model will make it available through the secret_val
method. The module supports undeclared properties in the following methods: new, create, [], []=, update_attribute,
update_attribute!, update_attributes and their corresponding aliases.

7.2.1 Types and Conversion

The type option has some interesting qualities that are worth being aware of when developing. It defines the type of
object that you expect when returning the value to Ruby, _not_ the type that will be stored in the database. There are
a few types available by default.

• String

• Integer

• BigDecimal

• Date

• Time

• DateTime

• Boolean (TrueClass or FalseClass)

Declaring a type is not necessary and, in some cases, is better for performance. You should omit a type declaration if
you are confident in the consistency of data going to/from the database.

38 Chapter 7. Properties

http://guides.rubyonrails.org/active_record_validations.html

Neo4j.rb Documentation, Release 9.2.3

class Post
include Neo4j::ActiveNode

property :score, type: Integer
property :created_at, type: DateTime

end

In this model, the score property’s type will ensure that String interpretations of numbers are always converted to
Integer when you return the property in Ruby. As an added bonus, it will convert before saving to the database because
Neo4j is capable of storing Ints natively, so you won’t have to convert every time. DateTimes, however, are a different
beast, because Neo4j cannot handle Ruby’s native formats. To work around this, type converter knows to change the
DateTime object into an Integer before saving and then, when loading the node, it will convert the Integer back into a
DateTime.

This magic comes with a cost. DateTime conversion in particular is expensive and if you are obsessed with speed,
you’ll find that it slows you down. A tip for those users is to set your timestamps to type: Integer and you will
end up with Unix timestamps that you can manipulate if/when you need them in friendlier formats.

7.2.2 Custom Converters

It is possible to define custom converters for types not handled natively by the gem.

class RangeConverter
class << self
def primitive_type

String
end

def convert_type
Range

end

def to_db(value)
value.to_s

end

def to_ruby(value)
ends = value.to_s.split('..').map { |d| Integer(d) }
ends[0]..ends[1]

end
alias_method :call, :to_ruby

end

include Neo4j::Shared::Typecaster
end

This would allow you to use property :my_prop, type: Range in a model. Each method and the
alias_method call is required. Make sure the module inclusion happens at the end of the file.

primitive_type is used to fool ActiveAttr’s type converters, which only recognize a few basic Ruby classes.

convert_type must match the constant given to the type option.

to_db provides logic required to transform your value into the class defined by primitive_type. It will store the
object in the database as this type.

to_ruby provides logic to transform the DB-provided value back into the class expected by code using the property.
It shuld return an object of the type set in convert_type.

7.2. Undeclared Properties 39

Neo4j.rb Documentation, Release 9.2.3

Note the alias_method to make to_ruby respond to call. This is to provide compatibility with the ActiveAttr
dependency.

An optional method, converted?(value) can be defined. This should return a boolean indicating whether a value
is already of the expected type for Neo4j.

40 Chapter 7. Properties

CHAPTER 8

Unique IDs

The database generates unique IDs and they are accessible from all nodes and relationships using the neo_idmethod.
These keys are somewhat volatile and may be reused or change throughout a database’s lifetime, so they are unsafe to
use within an application.

Neo4j.rb requires you to define which key should act as primary key on Neo4j::ActiveNode classes instead
of using the internal Neo4j ids. By default, ActiveNode will generate a unique ID using SecureRandom::uuid
saving it in a uuid property. The instance method id will also point to this.

You can define a global or per-model generation methods if you do not want to use the default. Additionally, you
can change the property that will be aliased to the id method. This can be done through Configuration or models
themselves.

Unique IDs are not generated for relationships or ActiveRel models because their IDs should not be used. To query
for a relationship, generate a match based from nodes. If you find yourself in situations where you need relationship
IDs, you probably need to define a new ActiveNode class!

8.1 Defining your own ID

The on parameter tells which method is used to generate the unique id.

class Person
include Neo4j::ActiveNode
id_property :personal_id, on: :phone_and_name

property :name
property :phone

def phone_and_name
self.name + self.phone # strange example ...

end
end

41

Neo4j.rb Documentation, Release 9.2.3

8.2 Using internal Neo4j IDs as id_property

Even if using internal Neo4j ids is not recommended, you can configure your model to use it:

class Person
include Neo4j::ActiveNode
id_property :neo_id

end

8.3 A note regarding constraints

A constraint is required for the id_property of an ActiveNode model. To create constraints, you can run the
following command:

rake neo4j:generate_schema_migration[constraint,Model,uuid]

Replacing Model with your model name and uuid with another id_property if you have specified something
else. When you are ready you can run the migrations:

rake neo4j:migrate

If you forget to do this, an exception will be raised giving you the appropriate command to generate the migration.

8.4 Adding IDs to Existing Data

If you have old or imported data in need of IDs, you can use the built-in populate_id_property migration
helper.

Just create a new migration like this and run it:

rails g neo4j:migration PopulateIdProperties

class PopulateIdProperties < Neo4j::Migrations::Base
def up
populate_id_property :MyModel

end

def down
raise IrreversibleMigration

end
end

It will load the model, find its given ID property and generation method, and populate that property on all nodes of that
class where an id_property is not already assigned. It does this in batches of up to 900 at a time by default, but
this can be changed with the MAX_PER_BATCH environment variable (batch time taken standardized per node will be
shown to help you tune batch size for your DB configuration).

8.5 Working with Legacy Schemas

If you already were using uuids, give yourself a pat on the back. Unfortunately, you may run into problems with
Neo4j.rb v3. Why? By default Neo4j.rb requires a uuid index and a uuid unique constraint on every ActiveNode. You

42 Chapter 8. Unique IDs

Neo4j.rb Documentation, Release 9.2.3

can change the name of the uuid by adding id_property as shown above. But, either way, you’re getting uuid as
a shadow index for your nodes.

If you had a property called uuid, you’ll have to change it or remove it since uuid is now a reserved word. If you
want to keep it, your indexes will have to match the style of the default id_property (uuid index and unique).

You’ll need to use the Neo4J shell or Web Interface.

Step 1: Check Indexes and Constraints

This command will provide a list of indexes and constraints

schema

Step 2: Clean up any indexes that are not unique using a migration

rails g neo4j:migration AddConstraintToTag

class AddConstraintToTag < Neo4j::Migrations::Base
def up
drop_index :Tag, :uuid
add_constraint :Tag, :uuid

end

def down
drop_constraint :Tag, :uuid
add_index :Tag, :uuid

end
end

Step 3: Add an id_property to your ActiveNode

id_property :uuid, auto: :uuid

Note: If you did not have an index or a constraint, Neo4j.rb will automatically create them for you.

8.5. Working with Legacy Schemas 43

Neo4j.rb Documentation, Release 9.2.3

44 Chapter 8. Unique IDs

CHAPTER 9

Querying

9.1 Introduction

If you are using the neo4j-core gem, querying is as simple as calling the query method on your session object
and providing a query and optional parameters:

neo4j_session.query('MATCH (n) RETURN n LIMIT {limit}', limit: 10)

Using the neo4j gem provides a number of additional options. Firstly in the neo4j gem, the session is made
accessible via a call to Neo4j::ActiveBase.current_session. So you could make the above query with:

Neo4j::ActiveBase.current_session.query('MATCH (n) RETURN n LIMIT {limit}', limit: 10)

Most of the time, though, using the neo4j gem involves using the ActiveNode and ActiveRelAPIs as described
below.

9.2 ActiveNode

9.2.1 Simple Query Methods

There are a number of ways to find and return nodes.

.find

Find an object by id_property

.find_by

find_by and find_by! behave as they do in ActiveRecord, returning the first object matching the criteria or nil
(or an error in the case of find_by!)

45

Neo4j.rb Documentation, Release 9.2.3

Post.find_by(title: 'Neo4j.rb is awesome')

9.2.2 Proxy Method Chaining

Like in ActiveRecord you can build queries via method chaining. This can start in one of three ways:

• Model.all

• Model.association

• model_object.association

In the case of the association calls, the scope becomes a class-level representation of the association’s model so far.
So for example if I were to call post.comments I would end up with a representation of nodes from the Comment
model, but only those which are related to the post object via the comments association.

At this point it should be mentioned that what associations return isn’t an Array but in fact an
AssociationProxy. AssociationProxy is Enumerable so you can still iterate over it as a collection.
This allows for the method chaining to build queries, but it also enables eager loading of associations

If if you call a method such as where, you will end up with a QueryProxy. Similar to an AssociationProxy,
a QueryProxy represents an enumerable query which hasn’t yet been executed and which you can call filtering and
sorting methods on as well as chaining further associations.

From an AssociationProxy or a QueryProxy you can filter, sort, and limit to modify the query that will be
performed or call a further association.

Querying the proxy

Similar to ActiveRecord you can perform various operations on a proxy like so:

lesson.teachers.where(name: /.* smith/i, age: 34).order(:name).limit(2)

The arguments to these methods are translated into Cypher query statements. For example in the above statement
the regular expression is translated into a Cypher =~ operator. Additionally all values are translated into Neo4j query
parameters for the best performance and to avoid query injection attacks.

Chaining associations

As you’ve seen, it’s possible to chain methods to build a query on one model. In addition it’s possible to also call
associations at any point along the chain to transition to another associated model. The simplest example would be:

student.lessons.teachers

This would returns all of the teachers for all of the lessons which the students is taking. Keep in mind that this builds
only one Cypher query to be executed when the result is enumerated. Finally you can combine scoping and association
chaining to create complex cypher query with simple Ruby method calls.

student.lessons(:l).where(level: 102).teachers(:t).where('t.age > 34').pluck(:l)

Here we get all of the lessons at the 102 level which have a teacher older than 34. The pluck method will actually
perform the query and return an Array result with the lessons in question. There is also a return method which
returns an Array of result objects which, in this case, would respond to a call to the #l method to return the lesson.

46 Chapter 9. Querying

http://neo4j.com/docs/stable/cypher-parameters.html
http://neo4j.com/docs/stable/cypher-parameters.html

Neo4j.rb Documentation, Release 9.2.3

Note here that we’re giving an argument to the associaton methods (lessons(:l) and teachers(:t)) in order
to define Cypher variables which we can refer to. In the same way we can also pass in a second argument to define a
variable for the relationship which the association follows:

student.lessons(:l, :r).where("r.start_date < {the_date} and r.end_date >= {the_date}
→˓").params(the_date: '2014-11-22').pluck(:l)

Here we are limiting lessons by the start_date and end_date on the relationship between the student and the
lessons. We can also use the rel_where method to filter based on this relationship:

student.lessons.where(subject: 'Math').rel_where(grade: 85)

See also:

Branching

When making association chains with ActiveNode you can use the branch method to go down one path before
jumping back to continue where you started from. For example:

Finds all exams for the student's lessons where there is a teacher who's age is
→˓greater than 34
student.lessons.branch { teachers.where('t.age > 34') }.exams

Similar to the Cypher:
MATCH (s:Student)-[:HAS_LESSON]->(lesson:Lesson)<-[:TEACHES]-(:Teacher), (lesson)<-
→˓[:FOR_LESSON]-(exam:Exam)
RETURN exam

Associations and Unpersisted Nodes

There is some special behavior around association creation when nodes are new and unsaved. Below are a few
scenarios and their outcomes.

When both nodes are persisted, associations changes using << or = take place immediately – no need to call save.

student = Student.first
Lesson = Lesson.first
student.lessons << lesson

In that case, the relationship would be created immediately.

When the node on which the association is called is unpersisted, no changes are made to the database until save is
called. Once that happens, a cascading save event will occur.

student = Student.new
lesson = Lesson.first || Lesson.new
This method will not save `student` or change relationships in the database:
student.lessons << lesson

Once we call save on student, two or three things will happen:

• Since student is unpersisted, it will be saved

• If lesson is unpersisted, it will be saved

• Once both nodes are saved, the relationship will be created

9.2. ActiveNode 47

Neo4j.rb Documentation, Release 9.2.3

This process occurs within a transaction. If any part fails, an error will be raised, the transaction will fail, and no
changes will be made to the database.

Finally, if you try to associate an unpersisted node with a persisted node, the unpersisted node will be saved and the
relationship will be created immediately:

student = Student.first
lesson = Lesson.new
student.lessons << lesson

In the above example, lesson would be saved and the relationship would be created immediately. There is no need
to call save on student.

Parameters

Neo4j supports parameters which have a number of advantages:

• You don’t need to worry about injection attacks when a value is passed as a parameter

• There is no need to worry about escaping values for parameters

• If only the values that you are passing down for a query change, using parameters keeps the query string the
same and allows Neo4j to cache the query execution

The Neo4j.rb project gems try as much as possible to use parameters. For example, if you call where with a Hash:

Student.all.where(age: 20)

A parameter will be automatically created for the value passed in.

Don’t assume that all methods use parameters. Always check the resulting query!

You can also specify parameters yourself with the params method like so:

Student.all.where("s.age < {age} AND s.name = {name} AND s.home_town = {home_town}")
.params(age: 24, name: 'James', home_town: 'Dublin')
.pluck(:s)

Variable-length relationships

Introduced in version 5.1.0

It is possible to specify a variable-length qualifier to apply to relationships when calling association methods.

student.friends(rel_length: 2)

This would find the friends of friends of a student. Note that you can still name matched nodes and relationships and
use those names to build your query as seen above:

student.friends(:f, :r, rel_length: 2).where('f.gender = {gender} AND r.since >=
→˓{date}').params(gender: 'M', date: 1.month.ago)

Note: You can either pass a single options Hash or provide both the node and relationship names along with the
optional Hash.

There are many ways to provide the length information to generate all the various possibilities Cypher offers:

48 Chapter 9. Querying

Neo4j.rb Documentation, Release 9.2.3

As a Integer:
Cypher: -[:`FRIENDS`*2]->
student.friends(rel_length: 2)

As a Range:
Cypher: -[:`FRIENDS`*1..3]->
student.friends(rel_length: 1..3) # Get up to 3rd degree friends

As a Hash:
Cypher: -[:`FRIENDS`*1..3]->
student.friends(rel_length: {min: 1, max: 3})

Cypher: -[:`FRIENDS`*0..]->
student.friends(rel_length: {min: 0})

Cypher: -[:`FRIENDS`*..3]->
student.friends(rel_length: {max: 3})

As the :any Symbol:
Cypher: -[:`FRIENDS`*]->
student.friends(rel_length: :any)

Caution: By default, “*..3” is equivalent to “*1..3” and “*” is equivalent to “*1..”, but this may change depending
on your Node4j server configuration. Keep that in mind when using variable-length relationships queries without
specifying a minimum value.

Note: When using variable-length relationships queries on has_one associations, be aware that multiple nodes could
be returned!

9.2.3 The Query API

The neo4j-core gem provides a Query class which can be used for building very specific queries with method
chaining. This can be used either by getting a fresh Query object from a Session or by building a Query off of a
scope such as above.

Neo4j::ActiveBase.new_query # Get a new Query object

Get a Query object based on a scope
Student.query_as(:s) # For a
student.lessons.query_as(:l)

... and based on an object:
student.query_as(:s)

The Query class has a set of methods which map directly to Cypher clauses and which return another Query object
to allow chaining. For example:

student.lessons.query_as(:l) # This gives us our first Query object
.match("l-[:has_category*]->(root_category:Category)").where("NOT(root_category-

→˓[:has_category]->()))
.pluck(:root_category)

9.2. ActiveNode 49

Neo4j.rb Documentation, Release 9.2.3

Here we can make our own MATCH clauses unlike in model scoping. We have where, pluck, and return here as
well in addition to all of the other clause-methods. See this page for more details.

Note that when using the Query API if you make multiple calls to methods it will try to combine the calls together
into one clause and even to re-order them. If you want to avoid this you can use the #break method:

Creates a query representing the cypher: MATCH (q:Person), (r:Car) MATCH (p:
→˓Person)-->(q)
query_obj.match(q: Person).match('r:Car').break.match('(p: Person)-->(q)')

TODO Duplicate this page and link to it from here (or just duplicate it here): https://github.com/neo4jrb/
neo4j-core/wiki/Queries

See also:

9.2.4 #proxy_as

Sometimes it makes sense to turn a Query object into (or back into) a proxy object like you would get from an
association. In these cases you can use the Query#proxy_as method:

student.query_as(:s)
.match("(s)-[rel:FRIENDS_WITH*1..3]->(s2:Student")
.proxy_as(Student, :s2).lessons

Here we pick up the s2 variable with the scope of the Student model so that we can continue calling associations on it.

9.2.5 match_to and first_rel_to

There are two methods, match_to and first_rel_to that both make simple patterns easier.

In the most recent release, match_to accepts nodes; in the master branch and in future releases, it will accept a node
or an ID. It is essentially shorthand for association.where(neo_id: node.neo_id) and returns a QueryProxy object.

starting from a student, match them to a lesson based off of submitted params, then
→˓return students in their classes
student.lessons.match_to(params[:id]).students

first_rel_to will return the first relationship found between two nodes in a QueryProxy chain.

student.lessons.first_rel_to(lesson)
or in the master branch, future releases
student.lessons.first_rel_to(lesson.id)

This returns a relationship object.

9.2.6 Finding in Batches

Finding in batches will soon be supported in the neo4j gem, but for now is provided in the neo4j-core gem (documen-
tation)

9.2.7 Orm_Adapter

You can also use the orm_adapter API, by calling #to_adapter on your class. See the API, https://github.com/ianwhite/
orm_adapter

50 Chapter 9. Querying

https://github.com/neo4jrb/neo4j-core/wiki/Queries
https://github.com/neo4jrb/neo4j-core/wiki/Queries
https://github.com/neo4jrb/neo4j-core/wiki/Queries
https://github.com/ianwhite/orm_adapter
https://github.com/ianwhite/orm_adapter

Neo4j.rb Documentation, Release 9.2.3

9.2.8 Find or Create By. . .

QueryProxy has a find_or_create_by method to make the node rel creation process easier. Its usage is simple:

a_node.an_association(params_hash)

The method has branching logic that attempts to match an existing node and relationship. If the pattern is not found,
it tries to find a node of the expected class and create the relationship. If that doesn’t work, it creates the node, then
creates the relationship. The process is wrapped in a transaction to prevent a failure from leaving the database in an
inconsistent state.

There are some mild caveats. First, it will not work on associations of class methods. Second, you should not use it
across more than one associations or you will receive an error. For instance, if you did this:

student.friends.lessons.find_or_create_by(subject: 'Math')

Assuming the lessons association points to a Lesson model, you would effectively end up with this:

math = Lesson.find_or_create_by(subject: 'Math')
student.friends.lessons << math

. . . which is invalid and will result in an error.

9.2. ActiveNode 51

Neo4j.rb Documentation, Release 9.2.3

52 Chapter 9. Querying

CHAPTER 10

Query Examples

In the rest of the documentation for this site we try to lay out all of the pieces of the Neo4j.rb gems to explain them
one at a time. Sometimes, though, it can be instructive to see examples. The following are examples of code where
somebody had a question and the resulting code after fixes / refactoring. This section will expand over time as new
examples are found.

10.1 Example 1: Find all contacts for a user two hops away, but don’t
include contacts which are only one hop away

user.contacts(:contact, :knows, rel_length: 2).where_not(
uuid: user.contacts.pluck(:uuid)

)

This works, though it makes two queries. The first to get the uuid s for the where_not and the second for the full
query. For the first query, user.contacts.pluck(:id) could be also used instead, though associations already
have a pre-defined method to get IDs, so this could instead be user.contact_ids.

This doesn’t take care of the problem of having two queries, though. If we keep the rel_length: 2, however, we
won’t be able to reference the nodes which are one hop away in order. This seems like it would be a straightforward
solution:

user.contacts(:contact1).contacts(:contact2).where_not('contact1 = contact2')

And it is straightforward, but it won’t work. Because Cypher matches one subgraph at a time (in this case roughly
(:User)--(contact1:User)--(contact2:User)), contact one is always just going to be the node
which is in between the user in question and contact2. It doesn’t represent “all users which are one step away”. So
if we want to do this as one query, we do need to first get all of the first-level nodes together so that we can then check
if the second level nodes are in that list. This can be done as:

user.as(:user).contacts
.query_as(:contact).with(:user, first_level_ids: 'collect(ID(contact))')

(continues on next page)

53

Neo4j.rb Documentation, Release 9.2.3

(continued from previous page)

.proxy_as(User, :user)

.contacts(:other_contact, nil, rel_length: 2)

.where_not('ID(other_contact) IN first_level_ids')

And there we have a query which is much more verbose than the original code, but accomplishes the goal in a single
query. Having two queries isn’t neccessarily bad, so the code’s complexity should be weighed against how both
versions perform on real datasets.

10.2 Example 2: Simple Recommendation Engine

If you are interested in more complex collaborative filter methods check out this article.

Let’s assume you have the following schema:

(:User)-[:FOLLOW|:SKIP]->(:Page)

We want to recommend pages for a user to follow based on their current followed pages.

Constraints:

• We want to include the source of the recommendation. i.e (we recommend you follow X because you follow
Y).

Note : To do this part, we are going to use an APOC function apoc.coll.sortMaps.

• We want to exclude pages the user has skipped or already follows.

• The recommended pages must have a name field.

Given our schema, we could write the following Cypher to accomplish this:

MATCH (user:User { id: "1" })
MATCH (user)-[:FOLLOW]->(followed_page:Page)<-[:FOLLOW]-(co_user:User)
MATCH (co_user)-[:FOLLOW]->(rec_page:Page)
WHERE exists(rec_page.name)
AND NOT (user)-[:FOLLOW|:SKIP]->(rec_page)
WITH rec_page, count(rec_page) AS score, collect(followed_page.name) AS source_names
ORDER BY score DESC LIMIT {limit}
UNWIND source_names AS source_name
WITH rec_page, score, source_name, count(source_name) AS contrib
WITH rec_page, score, apoc.coll.sortMaps(collect({name:source_name, contrib:contrib*-
→˓1}), 'contrib') AS sources
RETURN rec_page.name AS name, score, extract(source IN sources[0..3] | source.name)
→˓AS top_sources,
size(sources) AS sources_count

ORDER BY score DESC

Now let’s see how we could write this using ActiveNode syntax in a User Ruby class.

class User
include Neo4j::ActiveNode

property :id, type: Integer

has_many :out, :followed_pages, type: :FOLLOW, model_class: :Page
has_many :out, :skipped_pages, type: :SKIP, model_class: :Page

(continues on next page)

54 Chapter 10. Query Examples

https://neo4j.com/blog/collaborative-filtering-creating-teams/
https://neo4j-contrib.github.io/neo4j-apoc-procedures/index33.html

Neo4j.rb Documentation, Release 9.2.3

(continued from previous page)

def recommended_pages
as(:user)

.followed_pages(:followed_page)
.where("exists(followed_page.name)")

.followers(:co_user)

.followed_pages

.query_as(:rec_page) # Transition into Core Query
.where("exists(rec_page.name)")
.where_not("(user)-[:FOLLOW|:SKIP]->(rec_page)")

.with("rec_page, count(rec_page) AS score, collect(followed_page.name) AS
→˓source_names")

.order_by('score DESC').limit(25)
.unwind(source_name: :source_names) # This generates "UNWIND source_names AS

→˓source_name"
.with("rec_page, score, source_name, count(source_name) AS contrib")
.with("rec_page, score, apoc.coll.sortMaps(collect({name:source_name,

→˓contrib:contrib*-1}), 'contrib') AS sources")
.with("rec_page.name AS name, score, extract(source in sources[0..3] | source.

→˓name) AS top_sources, size(sources) AS sources_count")
.order_by('score DESC')

.pluck(:name, :score, :top_sources, :sources_count)
end

end

Note : The contrib*-1 value is a way of getting the desired order out of the sortMaps APOC function without needing
to reverse the resulting list.

This assumes we have a Page class like the following:

class Page
include Neo4j::ActiveNode

property name, type: String

has_many :in, :followers, type: :FOLLOW, model_class: :User
has_many :in, :skippers, type: :SKIP, model_class: :User

end

10.2. Example 2: Simple Recommendation Engine 55

Neo4j.rb Documentation, Release 9.2.3

56 Chapter 10. Query Examples

CHAPTER 11

QueryClauseMethods

The Neo4j::Core::Query class from the neo4j-core gem defines a DSL which allows for easy creation of Neo4j
Cypher queries. They can be started from a session like so:

a_session.query
The current session for `ActiveNode` / `ActiveRel` in the `neo4j` gem can be
→˓retrieved with `Neo4j::ActiveBase.current_session`

Advantages of using the Query class include:

• Method chaining allows you to build a part of a query and then pass it somewhere else to be built further

• Automatic use of parameters when possible

• Ability to pass in data directly from other sources (like Hash to match keys/values)

• Ability to use native Ruby objects (such as translating nil values to IS NULL, regular expressions to Cypher-style
regular expression matches, etc. . .)

Below is a series of Ruby code samples and the resulting Cypher that would be generated. These examples are all
generated directly from the spec file and are thus all tested to work.

11.1 Neo4j::Core::Query

11.1.1 #match

Ruby

.match('n')

Cypher

MATCH n

57

http://neo4j.com/developer/cypher-query-language
https://github.com/neo4jrb/neo4j-core/blob/master/spec/neo4j-core/unit/query_spec.rb

Neo4j.rb Documentation, Release 9.2.3

Ruby

.match(:n)

Cypher

MATCH (n)

Ruby

.match(n: Person)

Cypher

MATCH (n:`Person`)

Ruby

.match(n: 'Person')

Cypher

MATCH (n:`Person`)

Ruby

.match(n: ':Person')

Cypher

MATCH (n:Person)

Ruby

.match(n: :Person)

Cypher

MATCH (n:`Person`)

Ruby

.match(n: [:Person, "Animal"])

Cypher

MATCH (n:`Person`:`Animal`)

Ruby

58 Chapter 11. QueryClauseMethods

Neo4j.rb Documentation, Release 9.2.3

.match(n: ' :Person')

Cypher

MATCH (n:Person)

Ruby

.match(n: nil)

Cypher

MATCH (n)

Ruby

.match(n: 'Person {name: "Brian"}')

Cypher

MATCH (n:Person {name: "Brian"})

Ruby

.match(n: {name: 'Brian', age: 33})

Cypher

MATCH (n {name: {n_name}, age: {n_age}})

Parameters: {:n_name=>"Brian", :n_age=>33}

Ruby

.match(n: {Person: {name: 'Brian', age: 33}})

Cypher

MATCH (n:`Person` {name: {n_Person_name}, age: {n_Person_age}})

Parameters: {:n_Person_name=>"Brian", :n_Person_age=>33}

Ruby

.match('n--o')

Cypher

11.1. Neo4j::Core::Query 59

Neo4j.rb Documentation, Release 9.2.3

MATCH n--o

Ruby

.match('n--o', 'o--p')

Cypher

MATCH n--o, o--p

Ruby

.match('n--o').match('o--p')

Cypher

MATCH n--o, o--p

11.1.2 #optional_match

Ruby

.optional_match(n: Person)

Cypher

OPTIONAL MATCH (n:`Person`)

Ruby

.match('m--n').optional_match('n--o').match('o--p')

Cypher

MATCH m--n, o--p OPTIONAL MATCH n--o

11.1.3 #using

Ruby

.using('INDEX m:German(surname)')

Cypher

60 Chapter 11. QueryClauseMethods

Neo4j.rb Documentation, Release 9.2.3

USING INDEX m:German(surname)

Ruby

.using('SCAN m:German')

Cypher

USING SCAN m:German

Ruby

.using('INDEX m:German(surname)').using('SCAN m:German')

Cypher

USING INDEX m:German(surname) USING SCAN m:German

11.1.4 #where

Ruby

.where()

Cypher

Ruby

.where({})

Cypher

Ruby

.where('q.age > 30')

Cypher

WHERE (q.age > 30)

Ruby

11.1. Neo4j::Core::Query 61

Neo4j.rb Documentation, Release 9.2.3

.where('q.age' => 30)

Cypher

WHERE (q.age = {q_age})

Parameters: {:q_age=>30}

Ruby

.where('q.age' => [30, 32, 34])

Cypher

WHERE (q.age IN {q_age})

Parameters: {:q_age=>[30, 32, 34]}

Ruby

.where('q.age IN {age}', age: [30, 32, 34])

Cypher

WHERE (q.age IN {age})

Parameters: {:age=>[30, 32, 34]}

Ruby

.where('(q.age IN {age})', age: [30, 32, 34])

Cypher

WHERE (q.age IN {age})

Parameters: {:age=>[30, 32, 34]}

Ruby

.where('q.name =~ ?', '.*test.*')

Cypher

WHERE (q.name =~ {question_mark_param})

Parameters: {:question_mark_param=>".*test.*"}

Ruby

62 Chapter 11. QueryClauseMethods

Neo4j.rb Documentation, Release 9.2.3

.where('(q.name =~ ?)', '.*test.*')

Cypher

WHERE (q.name =~ {question_mark_param})

Parameters: {:question_mark_param=>".*test.*"}

Ruby

.where('(LOWER(str(q.name)) =~ ?)', '.*test.*')

Cypher

WHERE (LOWER(str(q.name)) =~ {question_mark_param})

Parameters: {:question_mark_param=>".*test.*"}

Ruby

.where('q.age IN ?', [30, 32, 34])

Cypher

WHERE (q.age IN {question_mark_param})

Parameters: {:question_mark_param=>[30, 32, 34]}

Ruby

.where('q.age IN ?', [30, 32, 34]).where('q.age != ?', 60)

Cypher

WHERE (q.age IN {question_mark_param}) AND (q.age != {question_mark_
→˓param2})

Parameters: {:question_mark_param=>[30, 32, 34], :question_mark_param2=>60}

Ruby

.where(q: {age: [30, 32, 34]})

Cypher

WHERE (q.age IN {q_age})

Parameters: {:q_age=>[30, 32, 34]}

Ruby

11.1. Neo4j::Core::Query 63

Neo4j.rb Documentation, Release 9.2.3

.where('q.age' => nil)

Cypher

WHERE (q.age IS NULL)

Ruby

.where(q: {age: nil})

Cypher

WHERE (q.age IS NULL)

Ruby

.where(q: {neo_id: 22})

Cypher

WHERE (ID(q) = {ID_q})

Parameters: {:ID_q=>22}

Ruby

.where(q: {age: 30, name: 'Brian'})

Cypher

WHERE (q.age = {q_age} AND q.name = {q_name})

Parameters: {:q_age=>30, :q_name=>"Brian"}

Ruby

.where(q: {age: 30, name: 'Brian'}).where('r.grade = 80')

Cypher

WHERE (q.age = {q_age} AND q.name = {q_name}) AND (r.grade = 80)

Parameters: {:q_age=>30, :q_name=>"Brian"}

Ruby

.where(q: {name: /Brian.*/i})

Cypher

64 Chapter 11. QueryClauseMethods

Neo4j.rb Documentation, Release 9.2.3

WHERE (q.name =~ {q_name})

Parameters: {:q_name=>"(?i)Brian.*"}

Ruby

.where(name: /Brian.*/i)

Cypher

WHERE (name =~ {name})

Parameters: {:name=>"(?i)Brian.*"}

Ruby

.where(name: /Brian.*/i).where(name: /Smith.*/i)

Cypher

WHERE (name =~ {name}) AND (name =~ {name2})

Parameters: {:name=>"(?i)Brian.*", :name2=>"(?i)Smith.*"}

Ruby

.where(q: {age: (30..40)})

Cypher

WHERE (q.age IN RANGE({q_age_range_min}, {q_age_range_max}))

Parameters: {:q_age_range_min=>30, :q_age_range_max=>40}

11.1.5 #where_not

Ruby

.where_not()

Cypher

Ruby

.where_not({})

Cypher

11.1. Neo4j::Core::Query 65

Neo4j.rb Documentation, Release 9.2.3

Ruby

.where_not('q.age > 30')

Cypher

WHERE NOT(q.age > 30)

Ruby

.where_not('q.age' => 30)

Cypher

WHERE NOT(q.age = {q_age})

Parameters: {:q_age=>30}

Ruby

.where_not('q.age IN ?', [30, 32, 34])

Cypher

WHERE NOT(q.age IN {question_mark_param})

Parameters: {:question_mark_param=>[30, 32, 34]}

Ruby

.where_not(q: {age: 30, name: 'Brian'})

Cypher

WHERE NOT(q.age = {q_age} AND q.name = {q_name})

Parameters: {:q_age=>30, :q_name=>"Brian"}

Ruby

.where_not(q: {name: /Brian.*/i})

Cypher

WHERE NOT(q.name =~ {q_name})

Parameters: {:q_name=>"(?i)Brian.*"}

66 Chapter 11. QueryClauseMethods

Neo4j.rb Documentation, Release 9.2.3

Ruby

.where('q.age > 10').where_not('q.age > 30')

Cypher

WHERE (q.age > 10) AND NOT(q.age > 30)

Ruby

.where_not('q.age > 30').where('q.age > 10')

Cypher

WHERE NOT(q.age > 30) AND (q.age > 10)

11.1.6 #match_nodes

one node object

Ruby

.match_nodes(var: node_object)

Cypher

MATCH (var) WHERE (ID(var) = {ID_var})

Parameters: {:ID_var=>246}

Ruby

.optional_match_nodes(var: node_object)

Cypher

OPTIONAL MATCH (var) WHERE (ID(var) = {ID_var})

Parameters: {:ID_var=>246}

integer

Ruby

.match_nodes(var: 924)

Cypher

11.1. Neo4j::Core::Query 67

Neo4j.rb Documentation, Release 9.2.3

MATCH (var) WHERE (ID(var) = {ID_var})

Parameters: {:ID_var=>924}

two node objects

Ruby

.match_nodes(user: user, post: post)

Cypher

MATCH (user), (post) WHERE (ID(user) = {ID_user}) AND (ID(post) = {ID_
→˓post})

Parameters: {:ID_user=>246, :ID_post=>123}

node object and integer

Ruby

.match_nodes(user: user, post: 652)

Cypher

MATCH (user), (post) WHERE (ID(user) = {ID_user}) AND (ID(post) = {ID_
→˓post})

Parameters: {:ID_user=>246, :ID_post=>652}

11.1.7 #unwind

Ruby

.unwind('val AS x')

Cypher

UNWIND val AS x

Ruby

.unwind(x: :val)

Cypher

68 Chapter 11. QueryClauseMethods

Neo4j.rb Documentation, Release 9.2.3

UNWIND val AS x

Ruby

.unwind(x: 'val')

Cypher

UNWIND val AS x

Ruby

.unwind(x: [1,3,5])

Cypher

UNWIND [1, 3, 5] AS x

Ruby

.unwind(x: [1,3,5]).unwind('val as y')

Cypher

UNWIND [1, 3, 5] AS x UNWIND val as y

11.1.8 #return

Ruby

.return('q')

Cypher

RETURN q

Ruby

.return(:q)

Cypher

RETURN q

Ruby

11.1. Neo4j::Core::Query 69

Neo4j.rb Documentation, Release 9.2.3

.return('q.name, q.age')

Cypher

RETURN q.name, q.age

Ruby

.return(q: [:name, :age], r: :grade)

Cypher

RETURN q.name, q.age, r.grade

Ruby

.return(q: :neo_id)

Cypher

RETURN ID(q)

Ruby

.return(q: [:neo_id, :prop])

Cypher

RETURN ID(q), q.prop

11.1.9 #order

Ruby

.order('q.name')

Cypher

ORDER BY q.name

Ruby

.order_by('q.name')

Cypher

70 Chapter 11. QueryClauseMethods

Neo4j.rb Documentation, Release 9.2.3

ORDER BY q.name

Ruby

.order('q.age', 'q.name DESC')

Cypher

ORDER BY q.age, q.name DESC

Ruby

.order(q: :age)

Cypher

ORDER BY q.age

Ruby

.order(q: :neo_id)

Cypher

ORDER BY ID(q)

Ruby

.order(q: [:age, {name: :desc}])

Cypher

ORDER BY q.age, q.name DESC

Ruby

.order(q: [:age, {neo_id: :desc}])

Cypher

ORDER BY q.age, ID(q) DESC

Ruby

.order(q: [:age, {name: :desc, grade: :asc}])

Cypher

11.1. Neo4j::Core::Query 71

Neo4j.rb Documentation, Release 9.2.3

ORDER BY q.age, q.name DESC, q.grade ASC

Ruby

.order(q: [:age, {name: :desc, neo_id: :asc}])

Cypher

ORDER BY q.age, q.name DESC, ID(q) ASC

Ruby

.order(q: {age: :asc, name: :desc})

Cypher

ORDER BY q.age ASC, q.name DESC

Ruby

.order(q: {age: :asc, neo_id: :desc})

Cypher

ORDER BY q.age ASC, ID(q) DESC

Ruby

.order(q: [:age, 'name desc'])

Cypher

ORDER BY q.age, q.name desc

Ruby

.order(q: [:neo_id, 'name desc'])

Cypher

ORDER BY ID(q), q.name desc

11.1.10 #limit

Ruby

72 Chapter 11. QueryClauseMethods

Neo4j.rb Documentation, Release 9.2.3

.limit(3)

Cypher

LIMIT {limit_3}

Parameters: {:limit_3=>3}

Ruby

.limit('3')

Cypher

LIMIT {limit_3}

Parameters: {:limit_3=>3}

Ruby

.limit(3).limit(5)

Cypher

LIMIT {limit_5}

Parameters: {:limit_3=>3, :limit_5=>5}

Ruby

.limit(nil)

Cypher

11.1.11 #skip

Ruby

.skip(5)

Cypher

SKIP {skip_5}

Parameters: {:skip_5=>5}

Ruby

11.1. Neo4j::Core::Query 73

Neo4j.rb Documentation, Release 9.2.3

.skip('5')

Cypher

SKIP {skip_5}

Parameters: {:skip_5=>5}

Ruby

.skip(5).skip(10)

Cypher

SKIP {skip_10}

Parameters: {:skip_5=>5, :skip_10=>10}

Ruby

.offset(6)

Cypher

SKIP {skip_6}

Parameters: {:skip_6=>6}

11.1.12 #with

Ruby

.with('n.age AS age')

Cypher

WITH n.age AS age

Ruby

.with('n.age AS age', 'count(n) as c')

Cypher

WITH n.age AS age, count(n) as c

Ruby

74 Chapter 11. QueryClauseMethods

Neo4j.rb Documentation, Release 9.2.3

.with(['n.age AS age', 'count(n) as c'])

Cypher

WITH n.age AS age, count(n) as c

Ruby

.with(age: 'n.age')

Cypher

WITH n.age AS age

11.1.13 #with_distinct

Ruby

.with_distinct('n.age AS age')

Cypher

WITH DISTINCT n.age AS age

Ruby

.with_distinct('n.age AS age', 'count(n) as c')

Cypher

WITH DISTINCT n.age AS age, count(n) as c

Ruby

.with_distinct(['n.age AS age', 'count(n) as c'])

Cypher

WITH DISTINCT n.age AS age, count(n) as c

Ruby

.with_distinct(age: 'n.age')

Cypher

11.1. Neo4j::Core::Query 75

Neo4j.rb Documentation, Release 9.2.3

WITH DISTINCT n.age AS age

11.1.14 #create

Ruby

.create('(:Person)')

Cypher

CREATE (:Person)

Ruby

.create(:Person)

Cypher

CREATE (:Person)

Ruby

.create(age: 41, height: 70)

Cypher

CREATE ({age: {age}, height: {height}})

Parameters: {:age=>41, :height=>70}

Ruby

.create(Person: {age: 41, height: 70})

Cypher

CREATE (:`Person` {age: {Person_age}, height: {Person_height}})

Parameters: {:Person_age=>41, :Person_height=>70}

Ruby

.create(q: {Person: {age: 41, height: 70}})

Cypher

76 Chapter 11. QueryClauseMethods

Neo4j.rb Documentation, Release 9.2.3

CREATE (q:`Person` {age: {q_Person_age}, height: {q_Person_height}})

Parameters: {:q_Person_age=>41, :q_Person_height=>70}

Ruby

.create(q: {Person: {age: nil, height: 70}})

Cypher

CREATE (q:`Person` {age: {q_Person_age}, height: {q_Person_height}})

Parameters: {:q_Person_age=>nil, :q_Person_height=>70}

Ruby

.create(q: {:'Child:Person' => {age: 41, height: 70}})

Cypher

CREATE (q:`Child:Person` {age: {q_Child_Person_age}, height: {q_Child_
→˓Person_height}})

Parameters: {:q_Child_Person_age=>41, :q_Child_Person_height=>70}

Ruby

.create(:'Child:Person' => {age: 41, height: 70})

Cypher

CREATE (:`Child:Person` {age: {Child_Person_age}, height: {Child_Person_
→˓height}})

Parameters: {:Child_Person_age=>41, :Child_Person_height=>70}

Ruby

.create(q: {[:Child, :Person] => {age: 41, height: 70}})

Cypher

CREATE (q:`Child`:`Person` {age: {q_Child_Person_age}, height: {q_Child_
→˓Person_height}})

Parameters: {:q_Child_Person_age=>41, :q_Child_Person_height=>70}

Ruby

11.1. Neo4j::Core::Query 77

Neo4j.rb Documentation, Release 9.2.3

.create([:Child, :Person] => {age: 41, height: 70})

Cypher

CREATE (:`Child`:`Person` {age: {Child_Person_age}, height: {Child_
→˓Person_height}})

Parameters: {:Child_Person_age=>41, :Child_Person_height=>70}

11.1.15 #create_unique

Ruby

.create_unique('(:Person)')

Cypher

CREATE UNIQUE (:Person)

Ruby

.create_unique(:Person)

Cypher

CREATE UNIQUE (:Person)

Ruby

.create_unique(age: 41, height: 70)

Cypher

CREATE UNIQUE ({age: {age}, height: {height}})

Parameters: {:age=>41, :height=>70}

Ruby

.create_unique(Person: {age: 41, height: 70})

Cypher

CREATE UNIQUE (:`Person` {age: {Person_age}, height: {Person_height}})

Parameters: {:Person_age=>41, :Person_height=>70}

Ruby

78 Chapter 11. QueryClauseMethods

Neo4j.rb Documentation, Release 9.2.3

.create_unique(q: {Person: {age: 41, height: 70}})

Cypher

CREATE UNIQUE (q:`Person` {age: {q_Person_age}, height: {q_Person_height}
→˓})

Parameters: {:q_Person_age=>41, :q_Person_height=>70}

11.1.16 #merge

Ruby

.merge('(:Person)')

Cypher

MERGE (:Person)

Ruby

.merge(:Person)

Cypher

MERGE (:Person)

Ruby

.merge(:Person).merge(:Thing)

Cypher

MERGE (:Person) MERGE (:Thing)

Ruby

.merge(age: 41, height: 70)

Cypher

MERGE ({age: {age}, height: {height}})

Parameters: {:age=>41, :height=>70}

Ruby

11.1. Neo4j::Core::Query 79

Neo4j.rb Documentation, Release 9.2.3

.merge(Person: {age: 41, height: 70})

Cypher

MERGE (:`Person` {age: {Person_age}, height: {Person_height}})

Parameters: {:Person_age=>41, :Person_height=>70}

Ruby

.merge(q: {Person: {age: 41, height: 70}})

Cypher

MERGE (q:`Person` {age: {q_Person_age}, height: {q_Person_height}})

Parameters: {:q_Person_age=>41, :q_Person_height=>70}

11.1.17 #delete

Ruby

.delete('n')

Cypher

DELETE n

Ruby

.delete(:n)

Cypher

DELETE n

Ruby

.delete('n', :o)

Cypher

DELETE n, o

Ruby

80 Chapter 11. QueryClauseMethods

Neo4j.rb Documentation, Release 9.2.3

.delete(['n', :o])

Cypher

DELETE n, o

Ruby

.detach_delete('n')

Cypher

DETACH DELETE n

Ruby

.detach_delete(:n)

Cypher

DETACH DELETE n

Ruby

.detach_delete('n', :o)

Cypher

DETACH DELETE n, o

Ruby

.detach_delete(['n', :o])

Cypher

DETACH DELETE n, o

11.1.18 #set_props

Ruby

.set_props('n = {name: "Brian"}')

Cypher

11.1. Neo4j::Core::Query 81

Neo4j.rb Documentation, Release 9.2.3

SET n = {name: "Brian"}

Ruby

.set_props(n: {name: 'Brian', age: 30})

Cypher

SET n = {n_set_props}

Parameters: {:n_set_props=>{:name=>"Brian", :age=>30}}

11.1.19 #set

Ruby

.set('n = {name: "Brian"}')

Cypher

SET n = {name: "Brian"}

Ruby

.set(n: {name: 'Brian', age: 30})

Cypher

SET n.`name` = {setter_n_name}, n.`age` = {setter_n_age}

Parameters: {:setter_n_name=>"Brian", :setter_n_age=>30}

Ruby

.set(n: {name: 'Brian', age: 30}, o: {age: 29})

Cypher

SET n.`name` = {setter_n_name}, n.`age` = {setter_n_age}, o.`age` =
→˓{setter_o_age}

Parameters: {:setter_n_name=>"Brian", :setter_n_age=>30, :setter_o_age=>29}

Ruby

.set(n: {name: 'Brian', age: 30}).set_props('o.age = 29')

Cypher

82 Chapter 11. QueryClauseMethods

Neo4j.rb Documentation, Release 9.2.3

SET n.`name` = {setter_n_name}, n.`age` = {setter_n_age}, o.age = 29

Parameters: {:setter_n_name=>"Brian", :setter_n_age=>30}

Ruby

.set(n: :Label)

Cypher

SET n:`Label`

Ruby

.set(n: [:Label, 'Foo'])

Cypher

SET n:`Label`, n:`Foo`

Ruby

.set(n: nil)

Cypher

11.1.20 #on_create_set

Ruby

.on_create_set('n = {name: "Brian"}')

Cypher

ON CREATE SET n = {name: "Brian"}

Ruby

.on_create_set(n: {})

Cypher

Ruby

11.1. Neo4j::Core::Query 83

Neo4j.rb Documentation, Release 9.2.3

.on_create_set(n: {name: 'Brian', age: 30})

Cypher

ON CREATE SET n.`name` = {setter_n_name}, n.`age` = {setter_n_age}

Parameters: {:setter_n_name=>"Brian", :setter_n_age=>30}

Ruby

.on_create_set(n: {name: 'Brian', age: 30}, o: {age: 29})

Cypher

ON CREATE SET n.`name` = {setter_n_name}, n.`age` = {setter_n_age}, o.
→˓`age` = {setter_o_age}

Parameters: {:setter_n_name=>"Brian", :setter_n_age=>30, :setter_o_age=>29}

Ruby

.on_create_set(n: {name: 'Brian', age: 30}).on_create_set('o.age = 29')

Cypher

ON CREATE SET n.`name` = {setter_n_name}, n.`age` = {setter_n_age}, o.
→˓age = 29

Parameters: {:setter_n_name=>"Brian", :setter_n_age=>30}

11.1.21 #on_match_set

Ruby

.on_match_set('n = {name: "Brian"}')

Cypher

ON MATCH SET n = {name: "Brian"}

Ruby

.on_match_set(n: {})

Cypher

Ruby

84 Chapter 11. QueryClauseMethods

Neo4j.rb Documentation, Release 9.2.3

.on_match_set(n: {name: 'Brian', age: 30})

Cypher

ON MATCH SET n.`name` = {setter_n_name}, n.`age` = {setter_n_age}

Parameters: {:setter_n_name=>"Brian", :setter_n_age=>30}

Ruby

.on_match_set(n: {name: 'Brian', age: 30}, o: {age: 29})

Cypher

ON MATCH SET n.`name` = {setter_n_name}, n.`age` = {setter_n_age}, o.
→˓`age` = {setter_o_age}

Parameters: {:setter_n_name=>"Brian", :setter_n_age=>30, :setter_o_age=>29}

Ruby

.on_match_set(n: {name: 'Brian', age: 30}).on_match_set('o.age = 29')

Cypher

ON MATCH SET n.`name` = {setter_n_name}, n.`age` = {setter_n_age}, o.age
→˓= 29

Parameters: {:setter_n_name=>"Brian", :setter_n_age=>30}

11.1.22 #remove

Ruby

.remove('n.prop')

Cypher

REMOVE n.prop

Ruby

.remove('n:American')

Cypher

REMOVE n:American

Ruby

11.1. Neo4j::Core::Query 85

Neo4j.rb Documentation, Release 9.2.3

.remove(n: 'prop')

Cypher

REMOVE n.prop

Ruby

.remove(n: :American)

Cypher

REMOVE n:`American`

Ruby

.remove(n: [:American, "prop"])

Cypher

REMOVE n:`American`, n.prop

Ruby

.remove(n: :American, o: 'prop')

Cypher

REMOVE n:`American`, o.prop

Ruby

.remove(n: ':prop')

Cypher

REMOVE n:`prop`

11.1.23 #start

Ruby

.start('r=node:nodes(name = "Brian")')

Cypher

86 Chapter 11. QueryClauseMethods

Neo4j.rb Documentation, Release 9.2.3

START r=node:nodes(name = "Brian")

Ruby

.start(r: 'node:nodes(name = "Brian")')

Cypher

START r = node:nodes(name = "Brian")

11.1.24 clause combinations

Ruby

.match(q: Person).where('q.age > 30')

Cypher

MATCH (q:`Person`) WHERE (q.age > 30)

Ruby

.where('q.age > 30').match(q: Person)

Cypher

MATCH (q:`Person`) WHERE (q.age > 30)

Ruby

.where('q.age > 30').start('n').match(q: Person)

Cypher

START n MATCH (q:`Person`) WHERE (q.age > 30)

Ruby

.match(q: {age: 30}).set_props(q: {age: 31})

Cypher

MATCH (q {age: {q_age}}) SET q = {q_set_props}

Parameters: {:q_age=>30, :q_set_props=>{:age=>31}}

Ruby

11.1. Neo4j::Core::Query 87

Neo4j.rb Documentation, Release 9.2.3

.match(q: Person).with('count(q) AS count')

Cypher

MATCH (q:`Person`) WITH count(q) AS count

Ruby

.match(q: Person).with('count(q) AS count').where('count > 2')

Cypher

MATCH (q:`Person`) WITH count(q) AS count WHERE (count > 2)

Ruby

.match(q: Person).with(count: 'count(q)').where('count > 2').with(new_
→˓count: 'count + 5')

Cypher

MATCH (q:`Person`) WITH count(q) AS count WHERE (count > 2) WITH count +
→˓5 AS new_count

Ruby

.match(q: Person).match('r:Car').break.match('(p: Person)-->q')

Cypher

MATCH (q:`Person`), r:Car MATCH (p: Person)-->q

Ruby

.match(q: Person).break.match('r:Car').break.match('(p: Person)-->q')

Cypher

MATCH (q:`Person`) MATCH r:Car MATCH (p: Person)-->q

Ruby

.match(q: Person).match('r:Car').break.break.match('(p: Person)-->q')

Cypher

MATCH (q:`Person`), r:Car MATCH (p: Person)-->q

Ruby

88 Chapter 11. QueryClauseMethods

Neo4j.rb Documentation, Release 9.2.3

.with(:a).order(a: {name: :desc}).where(a: {name: 'Foo'})

Cypher

WITH a ORDER BY a.name DESC WHERE (a.name = {a_name})

Parameters: {:a_name=>"Foo"}

Ruby

.with(:a).limit(2).where(a: {name: 'Foo'})

Cypher

WITH a LIMIT {limit_2} WHERE (a.name = {a_name})

Parameters: {:a_name=>"Foo", :limit_2=>2}

Ruby

.with(:a).order(a: {name: :desc}).limit(2).where(a: {name: 'Foo'})

Cypher

WITH a ORDER BY a.name DESC LIMIT {limit_2} WHERE (a.name = {a_name})

Parameters: {:a_name=>"Foo", :limit_2=>2}

Ruby

.order(a: {name: :desc}).with(:a).where(a: {name: 'Foo'})

Cypher

WITH a ORDER BY a.name DESC WHERE (a.name = {a_name})

Parameters: {:a_name=>"Foo"}

Ruby

.limit(2).with(:a).where(a: {name: 'Foo'})

Cypher

WITH a LIMIT {limit_2} WHERE (a.name = {a_name})

Parameters: {:a_name=>"Foo", :limit_2=>2}

Ruby

11.1. Neo4j::Core::Query 89

Neo4j.rb Documentation, Release 9.2.3

.order(a: {name: :desc}).limit(2).with(:a).where(a: {name: 'Foo'})

Cypher

WITH a ORDER BY a.name DESC LIMIT {limit_2} WHERE (a.name = {a_name})

Parameters: {:a_name=>"Foo", :limit_2=>2}

Ruby

.with('1 AS a').where(a: 1).limit(2)

Cypher

WITH 1 AS a WHERE (a = {a}) LIMIT {limit_2}

Parameters: {:a=>1, :limit_2=>2}

Ruby

.match(q: Person).where('q.age = {age}').params(age: 15)

Cypher

MATCH (q:`Person`) WHERE (q.age = {age})

Parameters: {:age=>15}

90 Chapter 11. QueryClauseMethods

CHAPTER 12

Configuration

To configure any of these variables you can do the following:

12.1 In Rails

In either config/application.rb or one of the environment configurations (e.g. config/environments/
development.rb) you can set config.neo4j.variable_name = value where variable_name and
value are as described below.

12.2 Other Ruby apps

You can set configuration variables directly in the Neo4j configuration class like so:
Neo4j::Config[:variable_name] = value where variable_name and value are as described below.

12.3 Variables

association_model_namespace Default: nil

Associations defined in node models will try to match association names to classes. For example,
has_many :out, :student will look for a Student class. To avoid having to use model_class:
'MyModule::Student', this config option lets you specify the module that should be used globally for
class name discovery.

Of course, even with this option set, you can always override it by calling model_class: 'ClassName'.

class_name_property Default: :_classname

Which property should be used to determine the ActiveNode class to wrap the node in

If there is no value for this property on a node the node‘s labels will be used to determine the ActiveNode
class

91

Neo4j.rb Documentation, Release 9.2.3

See also:

Wrapping

enums_case_sensitive Default: false

Determins whether enums property setters should be case sensitive or not.

See also:

activenode-enums

include_root_in_json Default: true

When serializing ActiveNode and ActiveRel objects, should there be a root in the JSON of the model
name.

See also:

http://api.rubyonrails.org/classes/ActiveModel/Serializers/JSON.html

logger Default: nil (or Rails.logger in Rails)

A Ruby Logger object which is used to log Cypher queries (info level is used). This is only for the neo4j
gem (that is, for models created with the ActiveNode and ActiveRel modules).

module_handling Default: :none

Available values: :demodulize, :none, proc

Determines what, if anything, should be done to module names when a model’s class is set. By default, there is a
direct mapping of an ActiveNode model name to the node label or an ActiveRel model to the relationship
type, so MyModule::MyClass results in a label with the same name.

The :demodulize option uses ActiveSupport’s method of the same name to strip off modules. If you use a proc,
it will the class name as an argument and you should return a string that modifies it as you see fit.

pretty_logged_cypher_queries Default: nil

If true, format outputted queries with newlines and colors to be more easily readable by humans

record_timestamps Default: false

A Rails-inspired configuration to manage inclusion of the Timestamps module. If set to true, all ActiveNode
and ActiveRel models will include the Timestamps module and have :created_at and :updated_at
properties.

skip_migration_check Default: false

Prevents the neo4j gem from raising Neo4j::PendingMigrationError in web requests when migra-
tions haven’t been run. For environments (like testing) where you need to use the neo4j:schema:load rake
task to build the database instead of migrations. Automatically set to true in Rails test environments by default

timestamp_type Default: DateTime

This method returns the specified default type for the :created_at and :updated_at timestamps. You
can also specify another type (e.g. Integer).

transform_rel_type Default: :upcase

Available values: :upcase, :downcase, :legacy, :none

Determines how relationship types for ActiveRel models are transformed when stored in the database. By
default this is upper-case to match with Neo4j convention so if you specify an ActiveRel model of HasPost
then the relationship type in the database will be HAS_POST

:legacy Causes the type to be downcased and preceded by a #

92 Chapter 12. Configuration

http://api.rubyonrails.org/classes/ActiveModel/Serializers/JSON.html

Neo4j.rb Documentation, Release 9.2.3

:none Uses the type as specified

wait_for_connection Default: false

This allows you to tell the gem to wait for up to 60 seconds for Neo4j to be available. This is useful in environ-
ments such as Docker Compose. This is currently only for Rails

12.4 Instrumented events

The neo4j-core gem instruments a handful of events so that users can subscribe to them to do logging, metrics,
or anything else that they need. For example, to create a block which is called any time a query is made via the
neo4j-core gem:

Neo4j::Core::CypherSession::Adaptors::Base.subscribe_to_query do |message|
puts message

end

The argument to the block (message in this case) will be an ANSI formatted string which can be outputted or stored.
If you want to access this event at a lower level, subscribe_to_query is actually tied to the neo4j.core.
cypher_query event to which you could subscribe to like:

ActiveSupport::Notifications.subscribe('neo4j.core.cypher_query') do |name, start,
→˓finish, id, payload|
puts payload[:query].to_cypher
or
payload[:query].print_cypher

puts "Query took: #{(finish - start)} seconds"
end

All methods and their corresponding events:

Neo4j::Core::CypherSession::Adaptors::Base.subscribe_to_query neo4j.core.cypher_query

Neo4j::Core::CypherSession::Adaptors::HTTP.subscribe_to_request neo4j.core.http.request

Neo4j::Core::CypherSession::Adaptors::Bolt.subscribe_to_request neo4j.core.bolt.request

Neo4j::Core::CypherSession::Adaptors::Embedded.subscribe_to_transaction
neo4j.core.embedded.transaction

12.4. Instrumented events 93

Neo4j.rb Documentation, Release 9.2.3

94 Chapter 12. Configuration

CHAPTER 13

Migrations

Neo4j does not have a set schema like relational databases, but sometimes changes to the schema and the data are
required. To help with this, Neo4j.rb provides an ActiveRecord-like migration framework and a set of helper
methods to manipulate both database schema and data. Just like ActiveRecord, a record of which transactions
have been run will be stored in the database so that a migration is automatically only run once per environment.

Note: If you are new to Neo4j, note that properties on nodes and relationships are not defined ahead of time. Properties
can be added and removed on the fly, and so adding a property to your ActiveNode or ActiveRel model is
sufficient to start storing data. No migration is needed to add properties, but if you remove a property from your model
you may want a migration to cleanup the data (by using the remove_property, for example).

Note: The migration functionality described on this page was introduced in version 8.0 of the neo4j gem.

13.1 Generators

Migrations can be created by using the built-in Rails generator:

rails generate neo4j:migration RenameUserNameToFirstName

This will generate a new file located in db/neo4j/migrate/xxxxxxxxxx_rename_user_name_to_first_name.
rb

class RenameUserNameToFirstName < Neo4j::Migrations::Base
def up
rename_property :User, :name, :first_name

end

def down
rename_property :User, :first_name, :name

(continues on next page)

95

Neo4j.rb Documentation, Release 9.2.3

(continued from previous page)

end
end

In the same way as ActiveRecord does, you should fill up the up and down methods to define the migration and
(eventually) the rollback steps.

13.2 Transactions

Every migrations runs inside a transaction by default. So, if some statement fails inside a migration fails, the database
rollbacks to the previous state.

However this behaviour is not always good. For instance, neo4j doesn’t allow schema and data changes in the same
transaction.

To disable this, you can use the disable_transactions! helper in your migration definition:

class SomeMigration < Neo4j::Migrations::Base
disable_transactions!

...
end

13.3 The schema file

When generating an empty database for your app you could run all of your migrations, but this strategy gets slower
over time and can even cause issues if your older migrations become incompatible with your newer code. For this
reason, whenever you run migrations a db/neo4j/schema.yml file is created which keeps track of constraints,
indexes (which aren’t automatically created by constraints), and which migrations have been run. This schema file can
then be loaded with the neo4j:schema:load rake task to quickly and safely setup a blank database for testing or
for a new environment. While the neo4j:migrate rake task automatically creates the schema.yml file, if you
ever need to generate it yourself you can use the neo4j:schema:dump rake task.

It is suggested that you check in the db/neo4j/schema.yml to your repository whenever you have new migra-
tions.

13.4 Tasks

Neo4j.rb implements a clone of the ActiveRecord migration tasks API to migrate.

13.4.1 neo4j:migrate:all

Runs any pending migration.

rake neo4j:migrate:all

96 Chapter 13. Migrations

Neo4j.rb Documentation, Release 9.2.3

13.4.2 neo4j:migrate

An alias for rake neo4j:migrate:all.

rake neo4j:migrate:all

13.4.3 neo4j:migrate:up

Executes a migration given it’s version id.

rake neo4j:migrate:up VERSION=some_version

13.4.4 neo4j:migrate:down

Reverts a migration given it’s version id.

rake neo4j:migrate:down VERSION=some_version

13.4.5 neo4j:migrate:status

Prints a detailed migration state report, showing up and down migrations together with their own version id.

rake neo4j:migrate:status

13.4.6 neo4j:rollback

Reverts the last up migration. You can additionally pass a STEPS parameter, specifying how many migration you
want to revert.

rake neo4j:rollback

13.4.7 neo4j:schema:dump

Reads the current database and generates a db/neo4j/schema.yml file to track constraints, indexes, and migra-
tions which have been run (runs automatically after the neo4j:migrate task)

rake neo4j:schema:dump

13.4.8 neo4j:schema:load

Reads the db/neo4j/schema.yml file and loads the constraints, indexes, and migration nodes into the database.
The default behavior is to only add, but an argument can be passed in to tell the task to remove any indexes / constraints
that were found in the database which were not in the schema.yml file.

rake neo4j:schema:load
rake neo4j:schema:load[true] # Remove any constraints or indexes which aren't in the
→˓``schema.yml`` file

13.4. Tasks 97

Neo4j.rb Documentation, Release 9.2.3

13.5 Integrate Neo4j.rb with ActiveRecord migrations

You can setup Neo4j migration tasks to run together with standard ActiveRecord ones. Simply create a new rake task
in lib/tasks/neo4j_migrations.rake:

Rake::Task['db:migrate'].enhance ['neo4j:migrate']

This will run the neo4j:migrate every time you run a rake db:migrate

13.6 Migration Helpers

13.6.1 #execute

Executes a pure neo4j cypher query, interpolating parameters.

execute('MATCH (n) WHERE n.name = {node_name} RETURN n', node_name: 'John')

execute('MATCH (n)-[r:`friend`]->() WHERE n.age = 7 DELETE r')

13.6.2 #query

An alias for Neo4j::Session.query. You can use it as root for the query builder:

query.match(:n).where(name: 'John').delete(:n).exec

13.6.3 #remove_property

Removes a property given a label.

remove_property(:User, :money)

13.6.4 #rename_property

Renames a property given a label.

rename_property(:User, :name, :first_name)

13.6.5 #drop_nodes

Removes all nodes with a certain label

drop_nodes(:User)

98 Chapter 13. Migrations

Neo4j.rb Documentation, Release 9.2.3

13.6.6 #add_label

Adds a label to nodes, given their current label

add_label(:User, :Person)

13.6.7 #add_labels

Adds labels to nodes, given their current label

add_label(:User, [:Person, :Boy])

13.6.8 #remove_label

Removes a label from nodes, given a label

remove_label(:User, :Person)

13.6.9 #remove_labels

Removes labels from nodes, given a label

remove_label(:User, [:Person, :Boy])

13.6.10 #rename_label

Renames a label

rename_label(:User, :Person)

13.6.11 #add_constraint

Adds a new unique constraint on a given label attribute.

Warning it would fail if you make data changes in the same migration. To fix, define disable_transactions!
in your migration file.

add_constraint(:User, :name)

Use force: true as an option in the third argument to ignore errors about an already existing constraint.

13.6.12 #drop_constraint

Drops an unique constraint on a given label attribute.

Warning it would fail if you make data changes in the same migration. To fix, define disable_transactions!
in your migration file.

13.6. Migration Helpers 99

Neo4j.rb Documentation, Release 9.2.3

drop_constraint(:User, :name)

Use force: true as an option in the third argument to ignore errors about the constraint being missing.

13.6.13 #add_index

Adds a new exact index on a given label attribute.

Warning it would fail if you make data changes in the same migration. To fix, define disable_transactions!
in your migration file.

add_index(:User, :name)

Use force: true as an option in the third argument to ignore errors about an already existing index.

13.6.14 #drop_index

Drops an exact index on a given label attribute.

Warning it would fail if you make data changes in the same migration. To fix, define disable_transactions!
in your migration file.

drop_index(:User, :name)

Use force: true as an option in the third argument to ignore errors about the index being missing.

13.6.15 #say

Writes some text while running the migration.

Ruby

say 'Hello'

Output

-- Hello

When passing true as second parameter, it writes it more indented.

Ruby

say 'Hello', true

Output

-> Hello

13.6.16 #say_with_time

Wraps a set of statements inside a block, printing the given and the execution time. When an Integer is returned, it
assumes it’s the number of affected rows.

Ruby

100 Chapter 13. Migrations

Neo4j.rb Documentation, Release 9.2.3

say_with_time 'Trims all names' do
query.match(n: :User).set('n.name = TRIM(n.name)').pluck('count(*)').

→˓first
end

Output

-- Trims all names.
-> 0.3451s
-> 2233 rows

13.6.17 #populate_id_property

Populates the uuid property (or any id_property you defined) of nodes given their model name.

populate_id_property :User

Check Adding IDs to Existing Data for more usage details.

13.6.18 #relabel_relation

Relabels a relationship, keeping intact any relationship attribute.

relabel_relation :old_label, :new_label

Additionally you can specify the starting and the destination node, using :from and :to.

You can specify also the :direction (one if :in, :out or :both).

Example:

relabel_relation :friends, :FRIENDS, from: :Animal, to: :Person, direction: :both

13.6.19 #change_relations_style

Relabels relationship nodes from one format to another.

Usage:

change_relations_style list_of_labels, old_style, new_style

For example, if you created a relationship #foo in 3.x, and you want to convert it to the 4.x+ foo syntax, you could
run this.

change_relations_style [:all, :your, :labels, :here], :lower_hash, :lower

Allowed styles are:

• :lower: lowercase string, like my_relation

• :upper: uppercase string, like MY_RELATION

• :lower_hash: Lowercase string starting with hash, like #my_relation

13.6. Migration Helpers 101

Neo4j.rb Documentation, Release 9.2.3

102 Chapter 13. Migrations

CHAPTER 14

Testing

To run your tests, you must have a Neo4j server running (ideally a different server than the development database on
a different port). One quick way to get a test database up and running is to use the built in rake task:

rake neo4j:install[community-latest,test]
or a specific version
rake neo4j:install[community-3.1.0,test]

You can configure it to respond on a different port like so:

rake neo4j:config[test,7475]

If you are using Rails, you can edit the test configuration config/environments/test.rb or the config/
neo4j.yml file (see Setup)

14.1 How to clear the database

14.1.1 Cypher DELETE

This is the most reliable way to clear your database in Neo4j

// For version of Neo4j before 2.3.0
// Nodes cannot be deleted without first deleting their relationships
MATCH (n)
OPTIONAL MATCH (n)-[r]-()
DELETE n,r

// For version of Neo4j after 2.3.0
// DETACH DELETE takes care of removing relationships for you
MATCH (n) DETACH DELETE n

In Ruby:

103

Neo4j.rb Documentation, Release 9.2.3

Just using the `neo4j-core` gem:
neo4j_session.query('MATCH (n) DETACH DELETE n')

When using the `neo4j` gem:
Neo4j::ActiveBase.current_session.query('MATCH (n) DETACH DELETE n')

If you are using ActiveNode and/or ActiveRel from the neo4j gem you will no doubt have
SchemaMigration nodes in the database. If you delete these nodes the gem will complain that your migrations
haven’t been run. To get around this you could modify the query to exclude those nodes:

MATCH (n) WHERE NOT n:`Neo4j::Migrations::SchemaMigration`
DETACH DELETE n

14.1.2 The database_cleaner gem

The database_cleaner gem is a popular and useful tool for abstracting away the cleaning of databases in tests.
There is support for Neo4j in the database_cleaner gem, but there are a couple of problems with it:

• Neo4j does not currently support truncation (wiping of the entire database designed to be faster than a DELETE)

• Neo4j supports transactions, but nested transactions do not work the same as in relational databases. (see below)

Because of this, all strategies in the database_cleaner gem amount to it’s “Deletion” strategy. Therefore, while
you are welcome to use the database_cleaner gem, is is generally simpler to execute one of the above Cypher
queries.

14.1.3 Delete data files

Completely delete the database files (slower, by removeds schema). If you installed Neo4j via the
neo4j-rake_tasks gem, you can run:

rake neo4j:reset_yes_i_am_sure[test]

If you are using embedded Neo4j, stop embedded db, delete the db path, start embedded db.

14.1.4 RSpec Transaction Rollback

If you are using RSpec you can perform tests in a transaction as you would using ActiveRecord. Just add the following
to your rspec configuration in spec/rails_helper.rb or spec/spec_helper.rb

For the `neo4j-core` gem
config.around do |example|

session.transaction do |tx|
example.run
tx.mark_failed

end
end

For the `neo4j` gem
config.around do |example|
Neo4j::ActiveBase.run_transaction do |tx|
example.run
tx.mark_failed

(continues on next page)

104 Chapter 14. Testing

Neo4j.rb Documentation, Release 9.2.3

(continued from previous page)

end
end

There is one big disadvantage to this approach though: In Neo4j, nested transactions still act as one big transaction. If
the code you are testing has a transaction which, for example, gets marked as failed, then the transaction around the
RSpec example will be marked as failed.

14.1.5 Using Rack::Test

If you’re using the Rack::Test <https://github.com/rack-test/rack-test> gem to test your Neo4j-enabled web applica-
tion from the outside, be aware that the Rack::Test::Methods mixin won’t work with this driver. Instead, use the
Rack::Test::Session approach as described in the Sinatra documentation <http://sinatrarb.com/testing.html>.

14.1. How to clear the database 105

Neo4j.rb Documentation, Release 9.2.3

106 Chapter 14. Testing

CHAPTER 15

Contributing

We very much welcome contributions! Before contributing there are a few things that you should know about the
neo4j.rb projects:

15.1 The Neo4j.rb Project

We have three main gems: neo4j, neo4j-core, neo4j-rake_tasks.

We try to follow semantic versioning based on semver.org <http://semver.org/>

15.2 Low Hanging Fruit

Just reporting issues is helpful, but if you want to help with some code we label our GitHub issues with
low-hanging-fruit to make it easy for somebody to start helping out:

https://github.com/neo4jrb/neo4j/labels/low-hanging-fruit

https://github.com/neo4jrb/neo4j-core/labels/low-hanging-fruit

https://github.com/neo4jrb/neo4j-rake_tasks/labels/low-hanging-fruit

Help or discussion on other issues is welcome, just let us know!

15.3 Communicating With the Neo4j.rb Team

GitHub issues are a great way to submit new bugs / ideas. Of course pull requests are welcome (though please check
with us first if it’s going to be a large change). We like tracking our GitHub issues with waffle.io (neo4j, neo4j-core,
neo4j-rake_tasks) but just through GitHub also works.

We hang out mostly in our Gitter.im chat room and are happy to talk or answer questions. We also are often around on
the Neo4j-Users Slack group.

107

https://github.com/neo4jrb/neo4j
https://github.com/neo4jrb/neo4j-core
https://github.com/neo4jrb/neo4j-rake_tasks
https://github.com/neo4jrb/neo4j/labels/low-hanging-fruit
https://github.com/neo4jrb/neo4j-core/labels/low-hanging-fruit
https://github.com/neo4jrb/neo4j-rake_tasks/labels/low-hanging-fruit
https://waffle.io/neo4jrb/neo4j
https://waffle.io/neo4jrb/neo4j-core
https://waffle.io/neo4jrb/neo4j-rake_tasks
https://gitter.im/neo4jrb/neo4j
http://neo4j.com/blog/public-neo4j-users-slack-group/

Neo4j.rb Documentation, Release 9.2.3

15.4 Running Specs

For running the specs, see our spec/README.md

15.5 Before you submit your pull request

15.5.1 Automated Tools

We use:

• RSpec

• Rubocop

• Coveralls

Please try to check at least the RSpec tests and Rubocop before making your pull request. Guardfile and .
overcommit.yml files are available if you would like to use guard (for RSpec and rubocop) and/or overcommit.

We also use Travis CI to make sure all of these pass for each pull request. Travis runs the specs across multiple
versions of Ruby and multiple Neo4j databases, so be aware of that for potential build failures.

15.5.2 Documentation

To aid our users, we try to keep a complete CHANGELOG.md file. We use keepachangelog.com as a guide. We
appreciate a line in the CHANGELOG.md as part of any changes.

We also use Sphinx / reStructuredText for our documentation which is published on readthedocs.org. We also appre-
ciate your help in documenting any user-facing changes.

Notes about our documentation setup:

• YARD documentation in code is also parsed and placed into the Sphinx site so that is also welcome. Note that
reStructuredText inside of your YARD docs will render more appropriately.

• You can use rake docs to build the documentation locally and rake docs:open to open it in your web
browser.

• Please make sure that you run rake docs before committing any documentation changes and checkin all
changes to docs/.

108 Chapter 15. Contributing

https://github.com/neo4jrb/neo4j/blob/master/spec/README.md
http://rspec.info/
https://github.com/bbatsov/rubocop
https://coveralls.io
http://keepachangelog.com/
http://neo4jrb.readthedocs.org/

CHAPTER 16

Additional Resources

The following is a list of resources where you can learn more about using Neo4j with Ruby.

• Neo4j.rb Screencast Series

• How NEO4J Saved my Relationship by Coraline Ada Ehmke

• Why You Should Use Neo4j in Your Next Ruby App

• Query or QueryProxy?

• Getting Started with Neo4j and Ruby

• Example Sinatra applications

– Using the neo4j gem

– Using only the neo4j-core gem

109

https://www.youtube.com/playlist?list=PL5klM3mD6alLUhNTPTbj5a3GBjU7oZN0t
http://confreaks.tv/videos/bathruby2016-how-neo4j-saved-my-relationship
https://www.sitepoint.com/why-you-should-use-neo4j-in-your-next-ruby-app/#comment-2689399402
http://neo4jrb.io/blog/2015/02/08/query_or_query-proxy.html
http://neo4j.com/developer/ruby-course/
https://github.com/neo4j-examples/movies-ruby-neo4jrb
https://github.com/neo4j-examples/movies-ruby-neo4j-core

Neo4j.rb Documentation, Release 9.2.3

110 Chapter 16. Additional Resources

CHAPTER 17

Helper Gems

17.1 devise-neo4j

devise-neo4j is an adaptor gem for using the devise authentication library with Neo4j.

17.2 cancancan-neo4j

The cancancan-neo4j gem is the neo4j adapter for the CanCanCan authorisation library. This gem will help you
seamlessly integrate cancan gem to your Ruby/Rails app wich has Neo4j as database.

17.3 neo4j-paperclip

The neo4jrb-paperclip gem allows easy use of the paperclip gem in ActiveNode and ActiveRel models.

17.4 neo4jrb_spatial

The neo4jrb_spatial gem add the ability to work with the Neo4j Spatial server plugin via the neo4j and
neo4j-core gems

17.5 neo4j-rspec

The neo4j-rspec gem adds RSpec matchers for easier testing of ActiveNode and ActiveRel models.

Neo4j.rb (the neo4j and neo4j-core gems) is a Ruby Object-Graph-Mapper (OGM) for the Neo4j graph database. It
tries to follow API conventions established by ActiveRecord and familiar to most Ruby developers but with a Neo4j
flavor.

111

https://github.com/neo4jrb/devise-neo4j
https://github.com/CanCanCommunity/cancancan-neo4j
https://github.com/canCanCommunity/cancancan
https://github.com/l4u/neo4jrb-paperclip
https://github.com/neo4jrb/neo4jrb_spatial
https://github.com/sineed/neo4j-rspec
https://github.com/neo4jrb/neo4j
https://github.com/neo4jrb/neo4j-core
https://www.ruby-lang.org/en/
http://neo4j.com/
http://guides.rubyonrails.org/active_record_basics.html

Neo4j.rb Documentation, Release 9.2.3

Ruby (software) A dynamic, open source programming language with a focus on simplicity and productivity. It has
an elegant syntax that is natural to read and easy to write.

Graph Database (computer science) A graph database stores data in a graph, the most generic of data structures,
capable of elegantly representing any kind of data in a highly accessible way.

Neo4j (databases) The world’s leading graph database

If you’re already familiar with ActiveRecord, DataMapper, or Mongoid, you’ll find the Object Model features you’ve
come to expect from an O*M:

• Properties

• Indexes / Constraints

• Callbacks

• Validation

• Assocations

Because relationships are first-class citizens in Neo4j, models can be created for both nodes and relationships.

112 Chapter 17. Helper Gems

CHAPTER 18

Additional features include

• A chainable arel-inspired query builder

• Transactions

• Migration framework

113

https://github.com/rails/arel

Neo4j.rb Documentation, Release 9.2.3

114 Chapter 18. Additional features include

CHAPTER 19

Requirements

• Ruby 1.9.3+ (tested in MRI and JRuby)

• Neo4j 2.1.0 + (version 4.0+ of the gem is required to use neo4j 2.2+)

115

Neo4j.rb Documentation, Release 9.2.3

116 Chapter 19. Requirements

CHAPTER 20

Indices and tables

• genindex

• modindex

• search

117

Neo4j.rb Documentation, Release 9.2.3

118 Chapter 20. Indices and tables

Index

A
association_model_namespace, 91

C
class_name_property, 91

E
enums_case_sensitive, 92

I
include_root_in_json, 92

L
logger, 92

M
module_handling, 92

N
neo4j:config, 18
neo4j:generate_schema_migration, 17
neo4j:install, 18
neo4j:restart, 18
neo4j:start, 18
neo4j:start_no_wait, 18
neo4j:stop, 18

P
pretty_logged_cypher_queries, 92

R
record_timestamps, 92

S
skip_migration_check, 92

T
timestamp_type, 92

transform_rel_type, 92

W
wait_for_connection, 93

119

	Introduction
	Terminology
	Neo4j
	Neo4j.rb

	Code Examples
	ActiveNode

	Setup

	Setup
	Ruby on Rails
	Generating a new app
	Adding the gem to an existing project
	Rails configuration
	Configuring Faraday (HTTP only)

	Any Ruby Project
	Connection

	What if I’m integrating with a pre-existing Neo4j database?
	Heroku

	Upgrade Guide
	The neo4j gem from 8.x to 9.x
	The neo4j-core gem from 8.x to 9.x
	The neo4j gem from 7.x to 8.x and the neo4j-core gem from 6.x to 7.x
	What has changed
	The neo4j-core gem
	The neo4j gem

	Rake Tasks
	ActiveNode
	Properties
	Labels
	Indexes and Constraints
	Labels
	Serialization
	Enums

	Scopes
	Wrapping
	Callbacks
	created_at, updated_at
	Validation
	id property (primary key)
	Associations
	Updating Associations
	Polymorphic Associations
	Dependent Associations
	Association Options
	Creating Unique Relationships
	Eager Loading

	ActiveRel
	When to Use?
	Setup
	Relationship Creation
	From an ActiveRel Model
	From a has_many or has_one association
	Creating Unique Relationships

	Query and Loading existing relationships
	:each_rel, :each_with_rel, or :pluck methods

	Accessing related nodes
	Advanced Usage
	Separation of Relationship Logic

	Additional methods
	Regarding: from and to

	Properties
	Validations
	Undeclared Properties
	Types and Conversion
	Custom Converters

	Unique IDs
	Defining your own ID
	Using internal Neo4j IDs as id_property
	A note regarding constraints
	Adding IDs to Existing Data
	Working with Legacy Schemas

	Querying
	Introduction
	ActiveNode
	Simple Query Methods
	Proxy Method Chaining
	The Query API
	#proxy_as
	match_to and first_rel_to
	Finding in Batches
	Orm_Adapter
	Find or Create By…

	Query Examples
	Example 1: Find all contacts for a user two hops away, but don’t include contacts which are only one hop away
	Example 2: Simple Recommendation Engine

	QueryClauseMethods
	Neo4j::Core::Query
	#match
	#optional_match
	#using
	#where
	#where_not
	#match_nodes
	#unwind
	#return
	#order
	#limit
	#skip
	#with
	#with_distinct
	#create
	#create_unique
	#merge
	#delete
	#set_props
	#set
	#on_create_set
	#on_match_set
	#remove
	#start
	clause combinations

	Configuration
	In Rails
	Other Ruby apps
	Variables
	Instrumented events

	Migrations
	Generators
	Transactions
	The schema file
	Tasks
	neo4j:migrate:all
	neo4j:migrate
	neo4j:migrate:up
	neo4j:migrate:down
	neo4j:migrate:status
	neo4j:rollback
	neo4j:schema:dump
	neo4j:schema:load

	Integrate Neo4j.rb with ActiveRecord migrations
	Migration Helpers
	#execute
	#query
	#remove_property
	#rename_property
	#drop_nodes
	#add_label
	#add_labels
	#remove_label
	#remove_labels
	#rename_label
	#add_constraint
	#drop_constraint
	#add_index
	#drop_index
	#say
	#say_with_time
	#populate_id_property
	#relabel_relation
	#change_relations_style

	Testing
	How to clear the database
	Cypher DELETE
	The database_cleaner gem
	Delete data files
	RSpec Transaction Rollback
	Using Rack::Test

	Contributing
	The Neo4j.rb Project
	Low Hanging Fruit
	Communicating With the Neo4j.rb Team
	Running Specs
	Before you submit your pull request
	Automated Tools
	Documentation

	Additional Resources
	Helper Gems
	devise-neo4j
	cancancan-neo4j
	neo4j-paperclip
	neo4jrb_spatial
	neo4j-rspec

	Additional features include
	Requirements
	Indices and tables

