
Neo4j.rb Documentation
Release 10.0.0

Chris Grigg, Brian Underwood

Jul 07, 2020

Contents

1 Introduction 3
1.1 Terminology . 3

1.1.1 Neo4j . 3
1.1.2 ActiveGraph . 3

1.2 Code Examples . 4
1.2.1 Node . 4

1.3 Setup . 4

2 Setup 5
2.1 Ruby on Rails . 5

2.1.1 Generating a new app . 5
2.1.2 Adding the gem to an existing project . 6
2.1.3 Rails configuration . 6

2.2 Any Ruby Project . 7
2.2.1 Driver Instance . 7

2.3 What if I’m integrating with a pre-existing Neo4j database? . 8
2.4 Heroku . 8

3 Upgrade Guide 9
3.1 How to upgrade to activegraph? . 9

3.1.1 Transaction API . 10
3.1.2 Exceptions . 10

4 Rake Tasks 11

5 Node 13
5.1 Properties . 13

5.1.1 Labels . 14
5.1.2 Indexes and Constraints . 14
5.1.3 Labels . 14
5.1.4 Serialization . 15
5.1.5 Enums . 15

5.2 Scopes . 16
5.3 Wrapping . 18
5.4 Callbacks . 18
5.5 created_at, updated_at . 18
5.6 Validation . 19

i

5.7 id property (primary key) . 19
5.8 Associations . 19

5.8.1 Updating Associations . 20
5.8.2 Polymorphic Associations . 20
5.8.3 Dependent Associations . 21
5.8.4 Association Options . 22
5.8.5 Creating Unique Relationships . 22
5.8.6 Eager Loading . 22

6 Relationship 25
6.1 When to Use? . 25
6.2 Setup . 25
6.3 Relationship Creation . 26

6.3.1 From an Relationship Model . 26
6.3.2 From a has_many or has_one association . 27
6.3.3 Creating Unique Relationships . 27

6.4 Query and Loading existing relationships . 27
6.4.1 :each_rel, :each_with_rel, or :pluck methods . 27

6.5 Accessing related nodes . 27
6.6 Advanced Usage . 28

6.6.1 Separation of Relationship Logic . 28
6.7 Additional methods . 29
6.8 Regarding: from and to . 29

7 Properties 31
7.1 Validations . 32
7.2 Undeclared Properties . 32

7.2.1 Types and Conversion . 32
7.2.2 Custom Converters . 33

8 Unique IDs 35
8.1 Defining your own ID . 35
8.2 Using internal Neo4j IDs as id_property . 36
8.3 A note regarding constraints . 36
8.4 Adding IDs to Existing Data . 36
8.5 Working with Legacy Schemas . 36

9 Querying 39
9.1 Introduction . 39
9.2 Node . 39

9.2.1 Simple Query Methods . 39
9.2.2 Proxy Method Chaining . 40
9.2.3 The Query API . 43
9.2.4 #proxy_as . 44
9.2.5 match_to and first_rel_to . 44
9.2.6 Finding in Batches . 44
9.2.7 Orm_Adapter . 44
9.2.8 Find or Create By. 45

10 Query Examples 47
10.1 Example 1: Find all contacts for a user two hops away, but don’t include contacts which are only one

hop away . 47
10.2 Example 2: Simple Recommendation Engine . 48

11 QueryClauseMethods 51

ii

11.1 ActiveGraph::Core::Query . 51
11.1.1 #match . 51
11.1.2 #optional_match . 54
11.1.3 #using . 54
11.1.4 #where . 55
11.1.5 #where_not . 59
11.1.6 #match_nodes . 61
11.1.7 #unwind . 62
11.1.8 #return . 63
11.1.9 #order . 64
11.1.10 #limit . 66
11.1.11 #skip . 67
11.1.12 #with . 68

11.2 #with_distinct . 69
11.2.1 #create . 70
11.2.2 #create_unique . 72
11.2.3 #merge . 73
11.2.4 #delete . 74
11.2.5 #set_props . 75
11.2.6 #set . 76
11.2.7 #on_create_set . 77
11.2.8 #on_match_set . 78
11.2.9 #remove . 79
11.2.10 #start . 80
11.2.11 clause combinations . 81

12 Configuration 85
12.1 In Rails . 85
12.2 Other Ruby apps . 85
12.3 Variables . 85
12.4 Instrumented events . 87

13 Migrations 89
13.1 Generators . 89
13.2 Transactions . 90
13.3 The schema file . 90
13.4 Tasks . 90

13.4.1 neo4j:migrate:all . 90
13.4.2 neo4j:migrate . 91
13.4.3 neo4j:migrate:up . 91
13.4.4 neo4j:migrate:down . 91
13.4.5 neo4j:migrate:status . 91
13.4.6 neo4j:rollback . 91
13.4.7 neo4j:schema:dump . 91
13.4.8 neo4j:schema:load . 91

13.5 Integrate Neo4j.rb with ActiveRecord migrations . 92
13.6 Migration Helpers . 92

13.6.1 #execute . 92
13.6.2 #query . 92
13.6.3 #remove_property . 92
13.6.4 #rename_property . 92
13.6.5 #drop_nodes . 92
13.6.6 #add_label . 93
13.6.7 #add_labels . 93

iii

13.6.8 #remove_label . 93
13.6.9 #remove_labels . 93
13.6.10 #rename_label . 93
13.6.11 #add_constraint . 93
13.6.12 #drop_constraint . 93
13.6.13 #add_index . 94
13.6.14 #drop_index . 94
13.6.15 #say . 94
13.6.16 #say_with_time . 94
13.6.17 #populate_id_property . 95
13.6.18 #relabel_relation . 95
13.6.19 #change_relations_style . 95

14 Testing 97
14.1 How to clear the database . 97

14.1.1 Cypher DELETE . 97
14.1.2 The database_cleaner gem . 98
14.1.3 Delete data files . 98
14.1.4 RSpec Transaction Rollback . 98
14.1.5 Using Rack::Test . 98

15 Contributing 99
15.1 The Neo4j.rb Project . 99
15.2 Low Hanging Fruit . 99
15.3 Communicating With the Neo4j.rb Team . 99
15.4 Running Specs . 100
15.5 Before you submit your pull request . 100

15.5.1 Automated Tools . 100
15.5.2 Documentation . 100

16 Additional Resources 101

17 Helper Gems 103
17.1 devise-activegraph . 103
17.2 cancancan-activegraph . 103
17.3 neo4j-paperclip . 103
17.4 neo4jrb_spatial . 103
17.5 neo4j-rspec . 103

18 Additional features include 105

19 Requirements 107

20 Indices and tables 109

Index 111

iv

Neo4j.rb Documentation, Release 10.0.0

Contents:

Contents 1

Neo4j.rb Documentation, Release 10.0.0

2 Contents

CHAPTER 1

Introduction

ActiveGraph is an ActiveRecord-inspired OGM (Object Graph Mapping, like ORM) for Ruby supporting Neo4j 3.4+.

1.1 Terminology

1.1.1 Neo4j

Node An Object or Entity which has a distinct identity. Can store arbitrary properties with values

Label A means of identifying nodes. Nodes can have zero or more labels. While similar in concept to relational table
names, nodes can have multiple labels (i.e. a node could have the labels Person and Teacher)

Relationship A link from one node to another. Can store arbitrary properties with values. A direction is required but
relationships can be traversed bi-directionally without a performance impact.

Type Relationships always have exactly one type which describes how it is relating it’s source and destination nodes
(i.e. a relationship with a FRIEND_OF type might connect two Person nodes)

1.1.2 ActiveGraph

ActiveGraph consists of the activegraph gem and suitable driver at level 1.7.x. There are currently 2 such available
drivers gems: neo4j-ruby-driver and neo4j-java-driver (jruby only). Both drivers implement exactly the same api and
can be swapped seamlessly on jruby.

activegraph Provides Node and Relationship modules for object modeling. Introduces Model and Association
concepts (see below).

drivers Provide low-level connectivity, transactions, and response object wrapping with api and functionality consis-
tent with the official neo4j drivers. Please see https://github.com/neo4jrb/neo4j-ruby-driver/tree/1.7

Model A Ruby class including either the ActiveGraph::Node module (for modeling nodes) or the
ActiveGraph::Relationship module (for modeling relationships) from the neo4j gem. These mod-
ules give classes the ability to define properties, associations, validations, and callbacks

3

http://en.wikipedia.org/wiki/Object-relational_mapping
http://en.wikipedia.org/wiki/Object_%28computer_science%29
https://github.com/neo4jrb/neo4j-ruby-driver/tree/1.7

Neo4j.rb Documentation, Release 10.0.0

Association Defined on an Node model. Defines either a has_one or has_many relationship to a model. A higher
level abstraction of a Relationship

1.2 Code Examples

With ActiveGraph, you can use either high-level abstractions for convenience or low level APIs for flexibility.

1.2.1 Node

Node provides an Object Graph Model (OGM) for abstracting Neo4j concepts with an ActiveRecord-like API:

Models to create nodes
person = Person.create(name: 'James', age: 15)

Get object by attributes
person = Person.find_by(name: 'James', age: 15)

Associations to traverse relationships
person.houses.map(&:address)

Method-chaining to build and execute queries
Person.where(name: 'James').order(age: :desc).first

Query building methods can be chained with associations
Here we get other owners for pre-2005 vehicles owned by the person in question
person.vehicles(:v).where('v.year < 2005').owners(:other).to_a

1.3 Setup

See the next section for instructions on Setup

4 Chapter 1. Introduction

CHAPTER 2

Setup

The activegraph gem supports both Ruby and JRuby and can be used with many different frameworks and ser-
vices.

Below are some instructions on how to get started:

2.1 Ruby on Rails

The following contains instructions on how to setup ActiveGraph with Rails. If you prefer a video to follow along you
can use this YouTube video

There are two ways to add neo4j to your Rails project. You can generate a new project with ActiveGraph as the default
model mapper or you can add it manually.

2.1.1 Generating a new app

To create a new Rails app with Neo4j as the default model mapper use -m to run a script from the Neo4j project and
-O to exclude ActiveRecord like so:

rails new myapp -O -m https://raw.githubusercontent.com/neo4jrb/activegraph/master/
→˓docs/activegraph.rb

An example series of setup commands:

rails new myapp -O -m https://raw.githubusercontent.com/neo4jrb/activegraph/master/
→˓docs/activegraph.rb
cd myapp
rake neo4j:install[community-4.0.6]
db/neo4j/development/bin/neo4j-admin set-initial-password password
rake neo4j:start
rails generate scaffold User name:string email:string
rake neo4j:migrate

(continues on next page)

5

https://www.youtube.com/watch?v=bDjbqRL9HcM

Neo4j.rb Documentation, Release 10.0.0

(continued from previous page)

rails s
open http://localhost:3000/users

See also:

2.1.2 Adding the gem to an existing project

Include in your Gemfile:

for rubygems
gem 'activegraph', '>= 10.0.0' # For example, see https://rubygems.org/gems/
→˓activegraph/versions for the latest versions
gem 'neo4j-ruby-driver'

In application.rb:

require 'active_graph/railtie'

Note: ActiveGraph does not interfere with ActiveRecord and both can be used in the same application

If you want the rails generate command to generate ActiveGraph models by default you can modify
application.rb like so:

class Application < Rails::Application
...

config.generators { |g| g.orm :active_graph }
end

2.1.3 Rails configuration

For both new apps and existing apps there are multiple ways to configure how to connect to neo4j. You can use
environment variables, the config/neo4j.yml file, or configure via the Rails application config.

For environment variables:

NEO4J_URL=bolt://localhost:7687

For the config/neo4j.yml file:

development:
url: neo4j://localhost:7687

test:
url: neo4j://localhost:7688

production:
url:
- neo4j://core1:7687
- neo4j://core2:7687
- neo4j://core3:7687

(continues on next page)

6 Chapter 2. Setup

Neo4j.rb Documentation, Release 10.0.0

(continued from previous page)

username: neo4j
password: password

The railtie provided by the neo4j gem will automatically look for and load this file.

You can also use your Rails configuration. The following example can be put into config/application.rb or
any of your environment configurations (config/environments/(development|test|production).
rb) file:

config.neo4j.driver.url = 'bolt://localhost:7687'

Neo4j requires authentication by default but if you install using the built-in rake tasks) authentication is disabled. If
you are using authentication you can configure it like this:

config.neo4j.driver.url = 'neo4j://localhost:7687'
config.neo4j.driver.username = 'neo4j'
config.neo4j.driver.username = 'password'

2.2 Any Ruby Project

Include activegrah and either neo4j-ruby-driver or neo4j-java-driver in your Gemfile:

gem 'activegraph', '>= 10.0.0' # For example, see https://rubygems.org/gems/
→˓activegraph/versions for the latest versions
gem 'neo4j-ruby-driver' # For example, see https://rubygems.org/gems/neo4j-ruby-
→˓driver/versions for the latest versions

Both are optional

To provide tasks to install/start/stop/configure Neo4j
require 'active_graph/rake_tasks'
Comes from the `neo4j-rake_tasks` gem

If you don’t already have a server you can install one with the rake tasks from neo4j_server.rake. See the (rake
tasks documentation) for details on how to install, configure, and start/stop a Neo4j server in your project directory.

2.2.1 Driver Instance

To start interacting with neo4j a driver instance is required:

In Ruby

When the railtie is included, this happens automatically.

Using the acivegraph gem (Node and Relationship) without Rails

To define your own driver for the activegraph gem you create a driver object and establish it as the default driver
with the Base module (this is done automatically in Rails):

2.2. Any Ruby Project 7

Neo4j.rb Documentation, Release 10.0.0

ActiveGraph::Base.driver = Neo4j::Driver::GraphDatabase.driver('neo4j::/localhost:7687
→˓', Neo4j::Driver.AuthTokens.basic('user','pass'), encryption: false)

Driver instances are thread-safe. Session and transactions can be created explicitly to guarantee reading your own
writes and atomic operations with the following methods:

ActiveGraph::Base.session
ActiveGraph::Base.write_transaction
ActiveGraph::Base.read_transaction

In the absense of those method calls activegraph automatically creates a session and write transaction and asso-
ciates them with the thread.

2.3 What if I’m integrating with a pre-existing Neo4j database?

When trying to get the activegraph gem to integrate with a pre-existing Neo4j database instance (common in cases
of migrating data from a legacy SQL database into a Neo4j-powered rails app), remember that every Node model is
required to have an ID property with a unique constraint upon it, and that unique ID property will default to uuid
unless you override it to use a different ID property.

This commonly leads to getting a ActiveGraph::DeprecatedSchemaDefinitionError in Rails when
attempting to access a node populated into a Neo4j database directly via Cypher (i.e. when Rails didn’t create the
node itself). To solve or avoid this problem, be certain to define and constrain as unique a uuid property (or whatever
other property you want Rails to treat as the unique ID property) in Cypher when loading the legacy data or use the
methods discussed in Unique IDs.

2.4 Heroku

Add a Neo4j db to your application:

To use GrapheneDB:
heroku addons:create graphenedb

To use Graph Story:
heroku addons:create graphstory

See also:

GrapheneDB https://devcenter.heroku.com/articles/graphenedb For plans: https://addons.heroku.com/graphenedb

Graph Story https://devcenter.heroku.com/articles/graphstory For plans: https://addons.heroku.com/graphstory

8 Chapter 2. Setup

https://devcenter.heroku.com/articles/graphenedb
https://addons.heroku.com/graphenedb
https://devcenter.heroku.com/articles/graphstory
https://addons.heroku.com/graphstory

CHAPTER 3

Upgrade Guide

This guide outlines changes from the last neo4j` gem version 9.x to activegraph version 10.x.

activegraph is an extensive refactoring of the neo4j gem. The major changes comprise of:

• full bolt support

• full causal cluster support

• removal of http support

• removal of embedded support (neo4j embedded is still supported via bolt)

• support for a neo4j ruby driver with an api of the official drivers

• discontinuation of the neo4j-core gem. Its functionality is replaced partially by neo4j-ruby-driver
and partially by activegraph

• higher naming consistency with activerecord and the official neo4j-java-driver

• configuration more consistent with activerecord

• changed transaction API

• support for sessions with bookmarks and read and write transaction

3.1 How to upgrade to activegraph?

Your neo4j application is unlikely to work with activegraph out of the box. The good news is that the changes
required are rather straightforward. To start follow the Setup guide. Once configured there few class name changes:

• Neo4j::ActiveNode became ActiveGraph::Node

• Neo4j::AciveRel became ActiveGrah::Relationship

• Neo4j::ActiveBase became ActiveGrapph::Base

• all other classes changed their namespace from Neo4j to ActiveGraph

If you use explicit cypher with {parameter} syntax you will need to change it to $parameter if using neo4j 4

9

Neo4j.rb Documentation, Release 10.0.0

3.1.1 Transaction API

The previous transaction api has been modified to support causal cluster and be a bit more intutive to activerecord
users. The following methods provide that api:

• ActiveGraph::Base.session - corresponds to driver’s session, if called multiple times from the same thread will
use the same instance

• ActiveGraph::Base.transaction - corresponds to driver’s begin_transaction, the most basic way of creating trans-
actions

• ActiveGraph::Base.read_transaction - corresponds to a driver read_transaction, with retry logic, routed to a
follower or read replica

• ActiveGraph::Base.write_transaction - corresponds to a driver witer_transaction, with retry logic, routed to the
leader

All the above methods can be called on concrete model classes as well.

3.1.2 Exceptions

Several Exception types which previously were defined in the `neo4j gem have been replaced with neo4j driver
exceptions.

10 Chapter 3. Upgrade Guide

CHAPTER 4

Rake Tasks

The neo4j-rake_tasks gem includes some rake tasks which make it easy to install and manage a Neo4j server
in the same directory as your Ruby project.

neo4j:generate_schema_migration

Arguments Either the string index or the string constraint

The Neo4j label

The property

Example: rake neo4j:generate_schema_migration[constraint,Person,uuid]

Creates a migration which force creates either a constraint or an index in the database for the given label /
property pair. When you create a model the gem will require that a migration be created and run and it will give
you the appropriate rake task in the exception.

neo4j:install Arguments: version and environment (environment default is development)

Example: rake neo4j:install[community-latest,development]

Downloads and installs Neo4j into $PROJECT_DIR/db/neo4j/<environment>/

For the version argument you can specify either community-latest/enterprise-latest to get
the most up-to-date stable version or you can specify a specific version with the format community-x.x.
x/enterprise-x.x.x

A custom download URL can be specified using the NEO4J_DIST environment variable like
NEO4J_DIST=http://dist.neo4j.org/neo4j-VERSION-unix.tar.gz

neo4j:config Arguments: environment and port

Example: rake neo4j:config[development,7100]

Configure the port which Neo4j runs on. This affects the HTTP REST interface and the web console address.
This also sets the HTTPS port to the specified port minus one (so if you specify 7100 then the HTTP port will
be 7099)

neo4j:start Arguments: environment

11

Neo4j.rb Documentation, Release 10.0.0

Example: rake neo4j:start[development]

Start the Neo4j server

Assuming everything is ok, point your browser to http://localhost:7474 and the Neo4j web console should load
up.

neo4j:shell Arguments: environment

Example: rake neo4j:shell[development]

Open a Neo4j shell console (REPL shell).

If Neo4j isn’t already started this task will first start the server and shut it down after the shell is exited.

neo4j:start_no_wait Arguments: environment

Example: rake neo4j:start_no_wait[development]

Start the Neo4j server with the start-no-wait command

neo4j:stop Arguments: environment

Example: rake neo4j:stop[development]

Stop the Neo4j server

neo4j:restart Arguments: environment

Example: rake neo4j:restart[development]

Restart the Neo4j server

12 Chapter 4. Rake Tasks

http://localhost:7474

CHAPTER 5

Node

Node is the ActiveRecord replacement module for Rails. Its syntax should be familiar for ActiveRecord users but has
some unique qualities.

To use Node, include ActiveGraph::Node in a class.

class Post
include ActiveGraph::Node

end

5.1 Properties

Properties for ActiveGraph::Node objects must be declared by default. Properties are declared using the property
method which is the same as attribute from the active_attr gem.

Example:

class Post
include ActiveGraph::Node
property :title
property :text, default: 'bla bla bla'
property :score, type: Integer, default: 0

validates :title, :presence => true
validates :score, numericality: { only_integer: true }

before_save do
self.score = score * 100

end

has_n :friends
end

See the Properties section for additional information.

13

Neo4j.rb Documentation, Release 10.0.0

See also:

5.1.1 Labels

By default Node takes your model class’ name and uses it directly as the Neo4j label for the nodes it represents. This
even includes using the module namespace of the class. That is, the class MyClass in the MyModule module will
have the label MyModule::MyClass. To change this behavior, see the module_handling configuration variable.

Additionally you can change the name of a particular Node by using mapped_label_name like so:

class Post
include ActiveGraph::Node

self.mapped_label_name = 'BlogPost'
end

5.1.2 Indexes and Constraints

To declare a index on a constraint on a property, you should create a migration. See Migrations

Note: In previous versions of Node indexes and constraints were defined on properties directly on the models and
were automatically created. This turned out to be not safe, and migrations are now required to create indexes and
migrations.

5.1.3 Labels

The class name maps directly to the label. In the following case both the class name and label are Post

class Post
include ActiveGraph::Node

end

If you want to specify a different label for your class you can use mapped_label_name:

class Post
include ActiveGraph::Node

self.mapped_label_name = 'BlogPost'
end

If you would like to use multiple labels you can use class inheritance. In the following case object created with the
Article model would have both Post and Article labels. When querying Article both labels are required on the nodes
as well.

class Post
include ActiveGraph::Node

end

class Article < Post
end

14 Chapter 5. Node

Neo4j.rb Documentation, Release 10.0.0

5.1.4 Serialization

Pass a property name as a symbol to the serialize method if you want to save JSON serializable data (strings, numbers,
hash, array, array with mixed object types*, etc.) to the database.

class Student
include ActiveGraph::Node

property :links

serialize :links
end

s = Student.create(links: { neo4j: 'http://www.neo4j.org', neotech: 'http://www.
→˓neotechnology.com' })
s.links
=> {"neo4j"=>"http://www.neo4j.org", "neotech"=>"http://www.neotechnology.com"}
s.links.class
=> Hash

Neo4j.rb serializes as JSON by default but pass it the constant Hash as a second parameter to serialize as YAML.
Those coming from ActiveRecord will recognize this behavior, though Rails serializes as YAML by default.

Neo4j allows you to save Ruby arrays to undefined or String types but their contents need to all be of the same type.
You can do user.stuff = [1, 2, 3] or user.stuff = [“beer, “pizza”, “doritos”] but not user.stuff = [1, “beer”, “pizza”].
If you wanted to do that, you could call serialize on your property in the model.

5.1.5 Enums

You can declare special properties that maps an integer value in the database with a set of keywords, like
ActiveRecord::Enum

class Media
include ActiveGraph::Node

enum type: [:image, :video, :unknown]
end

media = Media.create(type: :video)
media.type
=> :video
media.image!
media.image?
=> true

For every keyword specified, a couple of methods are defined to set or check the current enum state (In the example:
image?, image!, video?, . . .).

With options _prefix and _suffix, you can define how this methods are generating, by adding a prefix or a suffix.

With _prefix: :something, something will be added before every method name.

Media.enum type: [:image, :video, :unknown], _prefix: :something
media.something_image?
media.something_image!

With _suffix: true, instead, the name of the enum is added in the bottom of all methods:

5.1. Properties 15

Neo4j.rb Documentation, Release 10.0.0

Media.enum type: [:image, :video, :unknown], _suffix: true
media.image_type?
media.image_type!

You can find elements by enum value by using a set of scope that enum defines:

Media.image
=> CYPHER: "MATCH (result_media:`Media`) WHERE (result_media.type = 0)"
Media.video
=> CYPHER: "MATCH (result_media:`Media`) WHERE (result_media.type = 1)"

Or by using where:

Media.where(type: :image)
=> CYPHER: "MATCH (result_media:`Media`) WHERE (result_media.type = 0)"
Media.where(type: [Media.types[:image], Media.types[:video]])
=> CYPHER: "MATCH (result_media:`StoredFile`) WHERE (result_media.type IN [0, 1])"
Media.as(:m).where('m.type <> ?', Media.types[:image])
=> CYPHER: "MATCH (result_media:`StoredFile`) WHERE (result_media.type <> 0)"

By default, every enum property will require you to add an associated index to improve query performance. If you
want to disable this, simply pass _index: false to enum:

class Media
include ActiveGraph::Node

enum type: [:image, :video, :unknown], _index: false
end

Sometimes it is desirable to have a default value for an enum property. To acheive this, you can simply pass the
_default option when defining the enum:

class Media
include ActiveGraph::Node

enum type: [:image, :video, :unknown], _default: :video
end

By default, enum setters are case insensitive (in the example below, Media.create(type: 'VIDEO').type
== :video). If you wish to disable this for a specific enum, pass the _case_sensitive: true option. if
you wish to change the global default for _case_sensitive to true, use Neo4jrb’s enums_case_sensitive
config option (detailed in the Variables section).

class Media
include ActiveGraph::Node

enum type: [:image, :video, :unknown], _case_sensitive: false
end

5.2 Scopes

Scopes in Node are a way of defining a subset of nodes for a particular Node model. This could be as simple as:

16 Chapter 5. Node

Neo4j.rb Documentation, Release 10.0.0

class Person
include ActiveGraph::Node

scope :minors, -> { where(age: 0..17) }
end

This allows you chain a description of the defined set of nodes which can make your code easier to read such as
Person.minors or Car.all.owners.minors. While scopes are very useful in encapsulating logic, this scope
doesn’t neccessarily save us much beyond simply using Person.where(age: 0..17) directly. Scopes become
much more useful when they encapsulate more complicated logic:

class Person
include ActiveGraph::Node

scope :eligible, -> { where_not(age: 0..17).where(completed_form: true) }
end

And because you can chain scopes together, this can make your query chains very composable and expressive like:

Getting all hybrid convertables owned by recently active eligible people
Person.eligible.where(recently_active: true).cars.hybrids.convertables

While that’s useful in of itself, sometimes you want to be able to create more dynamic scopes by passing arguments.
This is supported like so:

class Person
include ActiveGraph::Node

scope :around_age_of, -> (age) { where(age: (age - 5..age + 5)) }
end

Which can be used as:
Person.around_age_of(20)
or
Car.all.owners.around_age_of(20)

All of the examples so far have used the Ruby API for automatically generating Cypher. While it is often possible to
get by with this, it is sometimes not possible to create a scope without defining it with a Cypher string. For example,
if you need to use OR:

class Person
include ActiveGraph::Node

scope :non_teenagers, -> { where("#{identity}.age < 13 OR #{identity}.age >= 18") }
end

Since a Cypher query can have a number of different nodes and relationships that it is referencing, we need to be able
to refer to the current node’s variable. This is why we call the identity method, which will give the variable which
is being used in the query chain on which the scope is being called.

Warning: Since the identity comes from whatever was specified as the cypher variable for the node on the
other side of the association. If the cypher variables were generated from an untrusted source (like from a user of
your app) you may leave yourself open to a Cypher injection vulnerability. It is not recommended to generate your
Cypher variables based on user input!

5.2. Scopes 17

Neo4j.rb Documentation, Release 10.0.0

Finally, the scope method just gives us a convenient way of having a method on our model class which returns
another query chain object. Sometimes to make even more complex logic or even to just return a simple result which
can be called on a query chain but which doesn’t continue the chain, we can create a class method ourselves:

class Person
include ActiveGraph::Node

def self.average_age
all(:person).pluck('avg(person.age)').first

end
end

So if you wanted to find the average age of all eligible people, you could call Person.eligible.average_age
and you would be given a single number.

To implement a more complicated scope with a class method you simply need to return a query chain at the end.

5.3 Wrapping

When loading a node from the database there is a process to determine which Node model to choose for wrapping
the node. If nothing is configured on your part then when a node is created labels will be saved representing all of the
classes in the hierarchy.

That is, if you have a Teacher class inheriting from a Person model, then creating a Person object will create a
node in the database with a Person label, but creating a Teacher object will create a node with both the Teacher
and Person labels.

If there is a value for the property defined by class_name_property then the value of that property will be used directly
to determine the class to wrap the node in.

5.4 Callbacks

Implements like Active Records the following callback hooks:

• initialize

• validation

• find

• save

• create

• update

• destroy

5.5 created_at, updated_at

class Blog
include ActiveGraph::Node

include ActiveGraph::Timestamps # will give model created_at and updated_at
→˓timestamps

(continues on next page)

18 Chapter 5. Node

Neo4j.rb Documentation, Release 10.0.0

(continued from previous page)

include ActiveGraph::Timestamps::Created # will give model created_at timestamp
include ActiveGraph::Timestamps::Updated # will give model updated_at timestamp

end

5.6 Validation

Support the Active Model validation, such as:

validates :age, presence: true validates_uniqueness_of :name, :scope => :adult

5.7 id property (primary key)

Unique IDs are automatically created for all nodes using SecureRandom::uuid. See UniqueIDs for details.

5.8 Associations

has_many and has_one associations can also be defined on Node models to make querying and creating relation-
ships easier.

class Post
include ActiveGraph::Node
has_many :in, :comments, origin: :post
has_one :out, :author, type: :author, model_class: :Person

end

class Comment
include ActiveGraph::Node
has_one :out, :post, type: :post
has_one :out, :author, type: :author, model_class: :Person

end

class Person
include ActiveGraph::Node
has_many :in, :posts, origin: :author
has_many :in, :comments, origin: :author

Match all incoming relationship types
has_many :in, :written_things, type: false, model_class: [:Post, :Comment]

or if you want to match all model classes:
has_many :in, :written_things, type: false, model_class: false

or if you watch to match Posts and Comments on all relationships (in and out)
has_many :both, :written_things, type: false, model_class: [:Post, :Comment]

end

You can query associations:

5.6. Validation 19

Neo4j.rb Documentation, Release 10.0.0

post.comments.to_a # Array of comments
comment.post # Post object
comment.post.comments # Original comment and all of it's siblings. Makes just
→˓one query
post.comments.author.posts # All posts of people who have commented on the post.
→˓Still makes just one query

When querying has_one associations, by default .first will be called on the result. This makes the result non-
chainable if the result is nil. If you want to ensure a chainable result, you can call has_one with a chainable:
true argument.

comment.post # Post object
comment.post(chainable: true) # Association proxy object wrapping post

You can create associations

post.comments = [comment1, comment2] # Removes all existing relationships
post.comments << comment3 # Creates new relationship

comment.post = post1 # Removes all existing relationships

5.8.1 Updating Associations

You can update attributes for objects of an association like this:

post.comments.update_all(flagged: true)
post.comments.where(text: /.*cats.*/).update_all(flagged: true)

You can even update properties of the relationships for the associations like so:

post.comments.update_all_rels(flagged: true)
post.comments.where(text: /.*cats.*/).update_all_rels(flagged: true)
Or to filter on the relationships
post.comments.where(flagged: nil).update_all_rels(flagged: true)

5.8.2 Polymorphic Associations

has_one or has_many associations which target multiple model_class are called polymorphic associa-
tions. This is done by setting model_class: false or model_class: [:ModelOne, :ModelTwo,
:Etc]. In our example, the Person class has a polymorphic association written_things

class Person
include ActiveGraph::Node

Match all incoming relationship types
has_many :in, :written_things, type: :WROTE, model_class: [:Post, :Comment]

end

You can’t perform standard association chains on a polymorphic association. For example, while you can call post.
comments.author.written_things, you cannot call post.comments.author.written_things.
post.comments (an exception will be raised). In this example, the return of .written_things can be either a
Post object or a Comment object, any method you called on an association made up of them both could have a dif-
ferent meaning for the Post object vs the Comment object. So how can you execute post.comments.author.
written_things.post.comments? This is where .query_as and .proxy_as come to the rescue! While

20 Chapter 5. Node

Neo4j.rb Documentation, Release 10.0.0

Node doesn’t know how to handle the .post call on .written_things, you know that the path from the return
of .written_things to Post nodes is (written_thing)-[:post]->(post:Post). To help Node out,
convert the AssociationProxy‘ object returned by post.comments.author.written_things into a Query
object with .query_as(), then manually specify the path of .post. Like so:

post.comments.author.written_things.query_as(:written_thing).match("(written_thing)-
→˓[:post]->(post:Post)")

It’s worth noting that the object returned by this chain is now a Query object, meaning that if you wish to get the
result ((post:Post)), you’ll need to .pluck(:post) it. However, we don’t want to get the result yet. Instead,
we wish to perform further queries. Because the end of the chain is now a Query, we could continue to manually
describe the path to the nodes we want using the Query API of .match, .where, .return, etc. For example, to
get post.comments.author.written_things.post.comments we could

post.comments.author.written_things.query_as(:written_thing).match("(written_thing)-
→˓[:post]->(post:Post)").match("(post)<-[:post]-(comment:Comment)").pluck(:comment)

But this isn’t ideal. It would be nice to make use of Node’s association chains to complete our query. We
know that the return of post.comments.author.written_things.query_as(:written_thing).
match("(written_thing)-[:post]->(post:Post)") is a Post object, after all. To allow for associ-
ation chains in this circumstance, .proxy_as() comes to the rescue! If we know that a Query will return a specific
model class, proxy_as allows us to tell Neo4jrb this, and begin association chaining from that point. For example

post.comments.author.written_things.query_as(:written_thing).match("(written_thing)-
→˓[:post]->(post:Post)").proxy_as(Post, :post).comments.author

See also:

#query_as http://www.rubydoc.info/gems/activegraph/ActiveGraph/Node/Query/QueryProxy#query_as-instance_
method and #proxy_as http://www.rubydoc.info/gems/activegraph/ActiveGraph/Core/Query#proxy_as-instance_
method

5.8.3 Dependent Associations

Similar to ActiveRecord, you can specify four dependent options when declaring an association.

class Route
include ActiveGraph::Node
has_many :out, :stops, type: :STOPPING_AT, dependent: :delete_orphans

end

The available options are:

• :delete, which will delete all associated records in Cypher. Callbacks will not be called. This is the fastest
method.

• :destroy, which will call each on the association and then destroy on each related object. Callbacks will
be called. Since this happens in Ruby, it can be a very expensive procedure, so use it carefully.

• :delete_orphans, which will delete only the associated records that have no other relationships of the same
type.

• :destroy_orphans, same as above, but it takes place in Ruby.

The two orphan-destruction options are unique to Neo4j.rb. As an example of when you’d use them, imagine you are
modeling tours, routes, and stops along those routes. A tour can have multiple routes, a route can have multiple stops,
a stop can be in multiple routes but must have at least one. When a route is destroyed, :delete_orphans would
delete only those related stops that have no other routes.

5.8. Associations 21

http://www.rubydoc.info/gems/activegraph/ActiveGraph/Node/Query/QueryProxy#query_as-instance_method
http://www.rubydoc.info/gems/activegraph/ActiveGraph/Node/Query/QueryProxy#query_as-instance_method
http://www.rubydoc.info/gems/activegraph/ActiveGraph/Core/Query#proxy_as-instance_method
http://www.rubydoc.info/gems/activegraph/ActiveGraph/Core/Query#proxy_as-instance_method

Neo4j.rb Documentation, Release 10.0.0

See also:

See also:

#has_many http://www.rubydoc.info/gems/activegraph/ActiveGraph/Node/HasN/ClassMethods#has_many-instance_
method and #has_one http://www.rubydoc.info/gems/activegraph/ActiveGraph/Node/HasN/ClassMethods#has_
one-instance_method

5.8.4 Association Options

By default, when you call an association Node will add the model_class labels to the query (as a filter). For
example:

person.friends
=>
MATCH (person125)
WHERE (ID(person125) = $ID_person125)
MATCH (person125)-[rel1:`FRIEND`]->(node3:`Person`)

The exception to this is if model_class: false, in which case MATCH
(person125)-[rel1:`FRIEND`]->(node3). More advanced Neo4j users may prefer to skip adding
labels to the target node, even if model_class != false. This can be accomplished on a case-by-case basis
by calling the association with a labels: false‘ options argument. For example: person.friends(labels:
false).

You can also make labels: false the default settings by creating the association with a labels: false
option. For example:

class Person
has_many :out, :friends, type: :FRIEND, model_class: self, labels: false

end

5.8.5 Creating Unique Relationships

By including the unique option in a has_many or has_one association’s method call, you can change the Cypher
used to create from “CREATE” to “CREATE UNIQUE.”

has_many :out, :friends, type: 'FRIENDS_WITH', model_class: :User, unique: true

Instead of true, you can give one of three different options:

• :none, also used true is given, will not include properties to determine whether ot not to create a unique
relationship. This means that no more than one relationship of the same pairing of nodes, rel type, and direction
will ever be created.

• :all, which will include all set properties in rel creation. This means that if a new relationship will be created
unless all nodes, type, direction, and rel properties are matched.

• {on: [keys]}will use the keys given to determine whether to create a new rel and the remaining properties
will be set afterwards.

5.8.6 Eager Loading

Node supports eager loading of associations in two ways. The first way is transparent. When you do the following:

22 Chapter 5. Node

http://www.rubydoc.info/gems/activegraph/ActiveGraph/Node/HasN/ClassMethods#has_many-instance_method
http://www.rubydoc.info/gems/activegraph/ActiveGraph/Node/HasN/ClassMethods#has_many-instance_method
http://www.rubydoc.info/gems/activegraph/ActiveGraph/Node/HasN/ClassMethods#has_one-instance_method
http://www.rubydoc.info/gems/activegraph/ActiveGraph/Node/HasN/ClassMethods#has_one-instance_method

Neo4j.rb Documentation, Release 10.0.0

person.blog_posts.each do |post|
puts post.title
puts "Tags: #{post.tags.map(&:name).join(', ')}"
post.comments.each do |comment|
puts ' ' + comment.title

end
end

Only three Cypher queries will be made:

• One to get the blog posts for the user

• One to get the tags for all of the blog posts

• One to get the comments for all of the blog posts

While three queries isn’t ideal, it is better than the naive approach of one query for every call to an object’s association
(Thanks to DataMapper for the inspiration).

For those times when you need to load all of your data with one Cypher query, however, you can do the following to
give Node a hint:

person.blog_posts.with_associations(:tags, :comments).each do |post|
puts post.title
puts "Tags: #{post.tags.map(&:name).join(', ')}"
post.comments.each do |comment|
puts ' ' + comment.title

end
end

All that we did here was add .with_associations(:tags, :comments). In addition to getting all of the
blog posts, this will generate a Cypher query which uses the Cypher COLLECT() function to efficiently roll-up all of
the associated objects. Node then automatically structures them into a nested set of Node objects for you.

You can also use with_associations with multiple levels like:

person.blog_posts.with_associations(:tags, comments: :hashtags)

You can use * to eager load relationships with variable length like:

person.blog_posts.with_associations('comments.owner.friends*')

To get fixed length relationships you can use *<length> like:

person.blog_posts.with_associations('comments.owner.friends*2')

This will eager load friends relationship till 2 levels deep.

5.8. Associations 23

http://datamapper.org/why.html

Neo4j.rb Documentation, Release 10.0.0

24 Chapter 5. Node

CHAPTER 6

Relationship

Relationship is a module in the neo4j gem which wraps relationships. Relationship objects share most of their be-
havior with Node objects. Relationship is purely optional and offers advanced functionality for complex relationships.

6.1 When to Use?

It is not always necessary to use Relationship models but if you have the need for validation, callback, or working with
properties on unpersisted relationships, it is the solution.

Note that in Neo4j it isn’t possible to access relationships except by first accessing a node. Thus Relationship
doesn’t implement a uuid property like Node.

6.2 Setup

Relationship model definitions have three requirements:

• include ActiveGraph::Relationship

• Call from_class with a symbol/string referring to an Node model or :any

• Call to_class with a symbol/string referring to an Node model or :any

See the note on from/to at the end of this page for additional information.

app/models/enrolled_in.rb
class EnrolledIn

include ActiveGraph::Relationship
before_save :do_this

from_class :Student
to_class :Lesson
`type` can be specified, but it is assumed from the model name

(continues on next page)

25

Neo4j.rb Documentation, Release 10.0.0

(continued from previous page)

In this case, without `type`, 'ENROLLED_IN' would be assumed
If you wanted to specify something else:
type 'ENROLLED'

property :since, type: Integer
property :grade, type: Integer
property :notes

validates_presence_of :since

def do_this
#a callback

end
end

Using the `Relationship` model in `Node` models:
app/models/student.rb
class Student

include ActiveGraph::Node

has_many :out, :lessons, rel_class: :EnrolledIn
end

app/models/lesson.rb
class Lesson

include ActiveGraph::Node

has_many :in, :students, rel_class: :EnrolledIn
end

See also:

6.3 Relationship Creation

6.3.1 From an Relationship Model

Once setup, Relationship models follow the same rules as Node in regard to properties. Declare them to create
setter/getter methods. You can also set created_at or updated_at for automatic timestamps.

Relationship instances require related nodes before they can be saved. Set these using the from_node and to_node
methods.

rel = EnrolledIn.new
rel.from_node = student
rel.to_node = lesson

You can pass these as parameters when calling new or create if you so choose.

rel = EnrolledIn.new(from_node: student, to_node: lesson)
#or
rel = EnrolledIn.create(from_node: student, to_node: lesson)

26 Chapter 6. Relationship

Neo4j.rb Documentation, Release 10.0.0

6.3.2 From a has_many or has_one association

Add the :rel_class option to an association with the name of an Relationship model. Association creation and querying
will use this rel class, verifying classes, adding defaults, and performing callbacks.

class Student
include ActiveGraph::Node
has_many :out, :lessons, rel_class: :EnrolledIn

end

6.3.3 Creating Unique Relationships

The creates_unique class method will change the Cypher generated during rel creation from CREATE to
CREATE UNIQUE. It may be called with one optional argument of the following:

• :none, also used when no argument is given, will not include properties to determine whether ot not to create
a unique relationship. This means that no more than one relationship of the same pairing of nodes, rel type, and
direction will ever be created.

• :all, which will include all set properties in rel creation. This means that if a new relationship will be created
unless all nodes, type, direction, and rel properties are matched.

• {on: [keys]}will use the keys given to determine whether to create a new rel and the remaining properties
will be set afterwards.

6.4 Query and Loading existing relationships

Like nodes, you can load relationships a few different ways.

6.4.1 :each_rel, :each_with_rel, or :pluck methods

Any of these methods can return relationship objects.

Student.first.lessons.each_rel { |r| }
Student.first.lessons.each_with_rel { |node, rel| }
Student.first.query_as(:s).match('(s)-[rel1:\`enrolled_in\`]->(n2)').pluck(:rel1)

These are available as both class or instance methods. Because both each_rel and each_with_rel return enumerables
when a block is skipped, you can take advantage of the full suite of enumerable methods:

Lesson.first.students.each_with_rel.select{ |n, r| r.grade > 85 }

Be aware that select would be performed in Ruby after a Cypher query is performed. The example above performs a
Cypher query that matches all students with relationships of type enrolled_in to Lesson.first, then it would call select
on that.

6.5 Accessing related nodes

Once a relationship has been wrapped, you can access the related nodes using from_node and to_node instance meth-
ods. Note that these cannot be changed once a relationship has been created.

6.4. Query and Loading existing relationships 27

Neo4j.rb Documentation, Release 10.0.0

student = Student.first
lesson = Lesson.first
rel = EnrolledIn.create(from_node: student, to_node: lesson, since: 2014)
rel.from_node
=> #<ActiveGraph::Relationship::RelatedNode:0x00000104589d78 @node=#<Student
→˓property: 'value'>>
rel.to_node
=> #<ActiveGraph::Relationship::RelatedNode:0x00000104589d50 @node=#<Lesson property:
→˓'value'>>

As you can see, this returns objects of type RelatedNode which delegate to the nodes. This allows for lazy loading
when a relationship is returned in the future: the nodes are not loaded until you interact with them, which is beneficial
with something like each_with_rel where you already have access to the nodes and do not want superfluous calls to
the server.

6.6 Advanced Usage

6.6.1 Separation of Relationship Logic

Relationship really shines when you have multiple associations that share a relationship type. You can use an Rela-
tionship model to separate the relationship logic and just let the node models be concerned with the labels of related
objects.

class User
include ActiveGraph::Node
property :managed_stats, type: Integer #store the number of managed objects to

→˓improve performance

has_many :out, :managed_lessons, model_class: :Lesson, rel_class: :ManagedRel
has_many :out, :managed_teachers, model_class: :Teacher, rel_class: :ManagedRel
has_many :out, :managed_events, model_class: :Event, rel_class: :ManagedRel
has_many :out, :managed_objects, model_class: false, rel_class: :ManagedRel

def update_stats
managed_stats += 1
save

end
end

class ManagedRel
include ActiveGraph::Relationship
after_create :update_user_stats
validate :manageable_object
from_class :User
to_class :any
type 'MANAGES'

def update_user_stats
from_node.update_stats

end

def manageable_object
errors.add(:to_node) unless to_node.respond_to?(:managed_by)

end
(continues on next page)

28 Chapter 6. Relationship

Neo4j.rb Documentation, Release 10.0.0

(continued from previous page)

end

elsewhere
rel = ManagedRel.new(from_node: user, to_node: any_node)
if rel.save

validation passed, to_node is a manageable object
else

something is wrong
end

6.7 Additional methods

:type instance method, _:type class method: return the relationship type of the model

:_from_class and :_to_class class methods: return the expected classes declared in the model

6.8 Regarding: from and to

:from_node, :to_node, :from_class, and :to_class all have aliases using start and end:
:start_class, :end_class, :start_node, :end_node, :start_node=, :end_node=. This main-
tains consistency with elements of the ActiveGraph::Core API while offering what may be more natural options for
Rails users.

6.7. Additional methods 29

Neo4j.rb Documentation, Release 10.0.0

30 Chapter 6. Relationship

CHAPTER 7

Properties

In classes that mixin the ActiveGraph::Node or ActiveGraph::Relationship modules, properties must
be declared using the property class method. It requires a single argument, a symbol that will correspond with the
getter and setter as well as the property in the database.

class Post
include ActiveGraph::Node

property :title
end

Two options are also available to both node and relationship models. They are:

• type, to specify the expected class of the stored value in Ruby

• default, a default value to set when the property is nil

Finally, you can serialize properties as JSON with the serialize class method.

In practice, you can put it all together like this:

class Post
include ActiveGraph::Node

property :title, type: String, default: 'This ia new post'
property :links

serialize :links
end

You will now be able to set the title property through mass-assignment (Post.new(title: 'My Title'))
or by calling the title= method. You can also give a hash of links ({ homepage: 'http://neo4jrb.io',
twitter: 'https://twitter.com/neo4jrb' }) to the links property and it will be saved as JSON to
the db.

31

Neo4j.rb Documentation, Release 10.0.0

7.1 Validations

The Node and Relationship modules in the neo4j gem are based off of ActiveModel. Because of this you
can use any validations defined by ActiveModel as well as create your own in the same style. For the best documen-
tation on validations, see the Active Record Validations page. The neo4j gem isn’t based off of ActiveRecord
aside from being inspired by it, but they both use ActiveModel under the covers.

One validation to note in particular is validates_uniqueness_of. Whereas most validations work only on the
model in memory, this validation requires connecting to the database. The neo4j gem implements it’s own version
of validates_uniqueness_of for Neo4j.

7.2 Undeclared Properties

Neo4j, being schemaless as far as the database is concerned, does not require that property keys be defined ahead of
time. As a result, it’s possible (and sometimes desirable) to set properties on the node that are not also defined on the
database. By including the module ActiveGraph::UndeclaredProperties no exceptions will be thrown if
unknown attributes are passed to selected methods.

class Post
include ActiveGraph::Node
include ActiveGraph::UndeclaredProperties

property :title
end

Post.create(title: 'My Post', secret_val: 123)
post = Post.first
post.secret_val #=> NoMethodError: undefined method `secret_val`
post[:secret_val] #=> 123...

In this case, simply adding the secret_val property to your model will make it available through the secret_val
method. The module supports undeclared properties in the following methods: new, create, [], []=, update_attribute,
update_attribute!, update_attributes and their corresponding aliases.

7.2.1 Types and Conversion

The type option has some interesting qualities that are worth being aware of when developing. It defines the type of
object that you expect when returning the value to Ruby, _not_ the type that will be stored in the database. There are
a few types available by default.

• String

• Integer

• BigDecimal

• Date

• Time

• DateTime

• Boolean (TrueClass or FalseClass)

Declaring a type is not necessary and, in some cases, is better for performance. You should omit a type declaration if
you are confident in the consistency of data going to/from the database.

32 Chapter 7. Properties

http://guides.rubyonrails.org/active_record_validations.html

Neo4j.rb Documentation, Release 10.0.0

class Post
include ActiveGraph::Node

property :score, type: Integer
property :created_at, type: DateTime

end

In this model, the score property’s type will ensure that String interpretations of numbers are always converted to
Integer when you return the property in Ruby. As an added bonus, it will convert before saving to the database because
Neo4j is capable of storing Ints natively, so you won’t have to convert every time. DateTimes, however, are a different
beast, because Neo4j cannot handle Ruby’s native formats. To work around this, type converter knows to change the
DateTime object into an Integer before saving and then, when loading the node, it will convert the Integer back into a
DateTime.

This magic comes with a cost. DateTime conversion in particular is expensive and if you are obsessed with speed,
you’ll find that it slows you down. A tip for those users is to set your timestamps to type: Integer and you will
end up with Unix timestamps that you can manipulate if/when you need them in friendlier formats.

7.2.2 Custom Converters

It is possible to define custom converters for types not handled natively by the gem.

class RangeConverter
class << self
def primitive_type

String
end

def convert_type
Range

end

def to_db(value)
value.to_s

end

def to_ruby(value)
ends = value.to_s.split('..').map { |d| Integer(d) }
ends[0]..ends[1]

end
alias_method :call, :to_ruby

end

include ActiveGraph::Shared::Typecaster
end

This would allow you to use property :my_prop, type: Range in a model. Each method and the
alias_method call is required. Make sure the module inclusion happens at the end of the file.

primitive_type is used to fool ActiveAttr’s type converters, which only recognize a few basic Ruby classes.

convert_type must match the constant given to the type option.

to_db provides logic required to transform your value into the class defined by primitive_type. It will store the
object in the database as this type.

to_ruby provides logic to transform the DB-provided value back into the class expected by code using the property.
It shuld return an object of the type set in convert_type.

7.2. Undeclared Properties 33

Neo4j.rb Documentation, Release 10.0.0

Note the alias_method to make to_ruby respond to call. This is to provide compatibility with the ActiveAttr
dependency.

An optional method, converted?(value) can be defined. This should return a boolean indicating whether a value
is already of the expected type for Neo4j.

34 Chapter 7. Properties

CHAPTER 8

Unique IDs

The database generates unique IDs and they are accessible from all nodes and relationships using the neo_idmethod.
These keys are somewhat volatile and may be reused or change throughout a database’s lifetime, so they are unsafe to
use within an application.

Neo4j.rb requires you to define which key should act as primary key on ActiveGraph::Node classes instead of
using the internal Neo4j ids. By default, Node will generate a unique ID using SecureRandom::uuid saving it in
a uuid property. The instance method id will also point to this.

You can define a global or per-model generation methods if you do not want to use the default. Additionally, you
can change the property that will be aliased to the id method. This can be done through Configuration or models
themselves.

Unique IDs are not generated for relationships or Relationship models because their IDs should not be used. To query
for a relationship, generate a match based from nodes. If you find yourself in situations where you need relationship
IDs, you probably need to define a new Node class!

8.1 Defining your own ID

The on parameter tells which method is used to generate the unique id.

class Person
include ActiveGraph::Node
id_property :personal_id, on: :phone_and_name

property :name
property :phone

def phone_and_name
self.name + self.phone # strange example ...

end
end

35

Neo4j.rb Documentation, Release 10.0.0

8.2 Using internal Neo4j IDs as id_property

Even if using internal Neo4j ids is not recommended, you can configure your model to use it:

class Person
include ActiveGraph::Node
id_property :neo_id

end

8.3 A note regarding constraints

A constraint is required for the id_property of an Node model. To create constraints, you can run the following
command:

rake neo4j:generate_schema_migration[constraint,Model,uuid]

Replacing Model with your model name and uuid with another id_property if you have specified something
else. When you are ready you can run the migrations:

rake neo4j:migrate

If you forget to do this, an exception will be raised giving you the appropriate command to generate the migration.

8.4 Adding IDs to Existing Data

If you have old or imported data in need of IDs, you can use the built-in populate_id_property migration
helper.

Just create a new migration like this and run it:

rails g neo4j:migration PopulateIdProperties

class PopulateIdProperties < ActiveGraph::Migrations::Base
def up
populate_id_property :MyModel

end

def down
raise IrreversibleMigration

end
end

It will load the model, find its given ID property and generation method, and populate that property on all nodes of that
class where an id_property is not already assigned. It does this in batches of up to 900 at a time by default, but
this can be changed with the MAX_PER_BATCH environment variable (batch time taken standardized per node will be
shown to help you tune batch size for your DB configuration).

8.5 Working with Legacy Schemas

If you already were using uuids, give yourself a pat on the back. Unfortunately, you may run into problems with
Neo4j.rb v3. Why? By default Neo4j.rb requires a uuid index and a uuid unique constraint on every Node. You can

36 Chapter 8. Unique IDs

Neo4j.rb Documentation, Release 10.0.0

change the name of the uuid by adding id_property as shown above. But, either way, you’re getting uuid as a
shadow index for your nodes.

If you had a property called uuid, you’ll have to change it or remove it since uuid is now a reserved word. If you
want to keep it, your indexes will have to match the style of the default id_property (uuid index and unique).

You’ll need to use the Neo4J shell or Web Interface.

Step 1: Check Indexes and Constraints

This command will provide a list of indexes and constraints

schema

Step 2: Clean up any indexes that are not unique using a migration

rails g neo4j:migration AddConstraintToTag

class AddConstraintToTag < ActiveGraph::Migrations::Base
def up
drop_index :Tag, :uuid
add_constraint :Tag, :uuid

end

def down
drop_constraint :Tag, :uuid
add_index :Tag, :uuid

end
end

Step 3: Add an id_property to your Node

id_property :uuid, auto: :uuid

Note: If you did not have an index or a constraint, Neo4j.rb will automatically create them for you.

8.5. Working with Legacy Schemas 37

Neo4j.rb Documentation, Release 10.0.0

38 Chapter 8. Unique IDs

CHAPTER 9

Querying

9.1 Introduction

Using the activegraph gem provides the entry point is ActiveGraph::Base. So you could make a simple
query with:

ActiveGraph::Base.query('MATCH (n) RETURN n LIMIT $limit', limit: 10)

Most of the time, though, using the activegraph gem involves using the Node and Relationship APIs as
described below.

9.2 Node

9.2.1 Simple Query Methods

There are a number of ways to find and return nodes.

.find

Find an object by id_property

.find_by

find_by and find_by! behave as they do in ActiveRecord, returning the first object matching the criteria or nil
(or an error in the case of find_by!)

Post.find_by(title: 'Neo4j.rb is awesome')

39

Neo4j.rb Documentation, Release 10.0.0

9.2.2 Proxy Method Chaining

Like in ActiveRecord you can build queries via method chaining. This can start in one of three ways:

• Model.all

• Model.association

• model_object.association

In the case of the association calls, the scope becomes a class-level representation of the association’s model so far.
So for example if I were to call post.comments I would end up with a representation of nodes from the Comment
model, but only those which are related to the post object via the comments association.

At this point it should be mentioned that what associations return isn’t an Array but in fact an
AssociationProxy. AssociationProxy is Enumerable so you can still iterate over it as a collection.
This allows for the method chaining to build queries, but it also enables eager loading of associations

If if you call a method such as where, you will end up with a QueryProxy. Similar to an AssociationProxy,
a QueryProxy represents an enumerable query which hasn’t yet been executed and which you can call filtering and
sorting methods on as well as chaining further associations.

From an AssociationProxy or a QueryProxy you can filter, sort, and limit to modify the query that will be
performed or call a further association.

Querying the proxy

Similar to ActiveRecord you can perform various operations on a proxy like so:

lesson.teachers.where(name: /.* smith/i, age: 34).order(:name).limit(2)

The arguments to these methods are translated into Cypher query statements. For example in the above statement
the regular expression is translated into a Cypher =~ operator. Additionally all values are translated into Neo4j query
parameters for the best performance and to avoid query injection attacks.

Chaining associations

As you’ve seen, it’s possible to chain methods to build a query on one model. In addition it’s possible to also call
associations at any point along the chain to transition to another associated model. The simplest example would be:

student.lessons.teachers

This would returns all of the teachers for all of the lessons which the students is taking. Keep in mind that this builds
only one Cypher query to be executed when the result is enumerated. Finally you can combine scoping and association
chaining to create complex cypher query with simple Ruby method calls.

student.lessons(:l).where(level: 102).teachers(:t).where('t.age > 34').pluck(:l)

Here we get all of the lessons at the 102 level which have a teacher older than 34. The pluck method will actually
perform the query and return an Array result with the lessons in question. There is also a return method which
returns an Array of result objects which, in this case, would respond to a call to the #l method to return the lesson.

Note here that we’re giving an argument to the associaton methods (lessons(:l) and teachers(:t)) in order
to define Cypher variables which we can refer to. In the same way we can also pass in a second argument to define a
variable for the relationship which the association follows:

40 Chapter 9. Querying

http://neo4j.com/docs/stable/cypher-parameters.html
http://neo4j.com/docs/stable/cypher-parameters.html

Neo4j.rb Documentation, Release 10.0.0

student.lessons(:l, :r).where("r.start_date < $the_date and r.end_date >= $the_date").
→˓params(the_date: '2014-11-22').pluck(:l)

Here we are limiting lessons by the start_date and end_date on the relationship between the student and the
lessons. We can also use the rel_where method to filter based on this relationship:

student.lessons.where(subject: 'Math').rel_where(grade: 85)

See also:

Branching

When making association chains with Node you can use the branch method to go down one path before jumping
back to continue where you started from. For example:

Finds all exams for the student's lessons where there is a teacher who's age is
→˓greater than 34
student.lessons.branch { teachers.where('t.age > 34') }.exams

Similar to the Cypher:
MATCH (s:Student)-[:HAS_LESSON]->(lesson:Lesson)<-[:TEACHES]-(:Teacher), (lesson)<-
→˓[:FOR_LESSON]-(exam:Exam)
RETURN exam

Associations and Unpersisted Nodes

There is some special behavior around association creation when nodes are new and unsaved. Below are a few
scenarios and their outcomes.

When both nodes are persisted, associations changes using << or = take place immediately – no need to call save.

student = Student.first
Lesson = Lesson.first
student.lessons << lesson

In that case, the relationship would be created immediately.

When the node on which the association is called is unpersisted, no changes are made to the database until save is
called. Once that happens, a cascading save event will occur.

student = Student.new
lesson = Lesson.first || Lesson.new
This method will not save `student` or change relationships in the database:
student.lessons << lesson

Once we call save on student, two or three things will happen:

• Since student is unpersisted, it will be saved

• If lesson is unpersisted, it will be saved

• Once both nodes are saved, the relationship will be created

This process occurs within a transaction. If any part fails, an error will be raised, the transaction will fail, and no
changes will be made to the database.

Finally, if you try to associate an unpersisted node with a persisted node, the unpersisted node will be saved and the
relationship will be created immediately:

9.2. Node 41

Neo4j.rb Documentation, Release 10.0.0

student = Student.first
lesson = Lesson.new
student.lessons << lesson

In the above example, lesson would be saved and the relationship would be created immediately. There is no need
to call save on student.

Parameters

Neo4j supports parameters which have a number of advantages:

• You don’t need to worry about injection attacks when a value is passed as a parameter

• There is no need to worry about escaping values for parameters

• If only the values that you are passing down for a query change, using parameters keeps the query string the
same and allows Neo4j to cache the query execution

The Neo4j.rb project gems try as much as possible to use parameters. For example, if you call where with a Hash:

Student.all.where(age: 20)

A parameter will be automatically created for the value passed in.

Don’t assume that all methods use parameters. Always check the resulting query!

You can also specify parameters yourself with the params method like so:

Student.all.where("s.age < $age AND s.name = $name AND s.home_town = $home_town")
.params(age: 24, name: 'James', home_town: 'Dublin')
.pluck(:s)

Variable-length relationships

Introduced in version 5.1.0

It is possible to specify a variable-length qualifier to apply to relationships when calling association methods.

student.friends(rel_length: 2)

This would find the friends of friends of a student. Note that you can still name matched nodes and relationships and
use those names to build your query as seen above:

student.friends(:f, :r, rel_length: 2).where('f.gender = $gender AND r.since >= $date
→˓').params(gender: 'M', date: 1.month.ago)

Note: You can either pass a single options Hash or provide both the node and relationship names along with the
optional Hash.

There are many ways to provide the length information to generate all the various possibilities Cypher offers:

As a Integer:
Cypher: -[:`FRIENDS`*2]->
student.friends(rel_length: 2)

(continues on next page)

42 Chapter 9. Querying

Neo4j.rb Documentation, Release 10.0.0

(continued from previous page)

As a Range:
Cypher: -[:`FRIENDS`*1..3]->
student.friends(rel_length: 1..3) # Get up to 3rd degree friends

As a Hash:
Cypher: -[:`FRIENDS`*1..3]->
student.friends(rel_length: {min: 1, max: 3})

Cypher: -[:`FRIENDS`*0..]->
student.friends(rel_length: {min: 0})

Cypher: -[:`FRIENDS`*..3]->
student.friends(rel_length: {max: 3})

As the :any Symbol:
Cypher: -[:`FRIENDS`*]->
student.friends(rel_length: :any)

Caution: By default, “*..3” is equivalent to “*1..3” and “*” is equivalent to “*1..”, but this may change depending
on your Node4j server configuration. Keep that in mind when using variable-length relationships queries without
specifying a minimum value.

Note: When using variable-length relationships queries on has_one associations, be aware that multiple nodes could
be returned!

9.2.3 The Query API

The activegraph gem provides a Query class which can be used for building very specific queries with method
chaining. This can be used either by getting a fresh Query object from a ActiveGraph::Base or by building a
Query off of a scope such as above.

ActiveGraph::Base.query # Get a new Query object

Get a Query object based on a scope
Student.query_as(:s) # For a
student.lessons.query_as(:l)

... and based on an object:
student.query_as(:s)

The Query class has a set of methods which map directly to Cypher clauses and which return another Query object
to allow chaining. For example:

student.lessons.query_as(:l) # This gives us our first Query object
.match("l-[:has_category*]->(root_category:Category)").where("NOT(root_category-

→˓[:has_category]->()))
.pluck(:root_category)

Here we can make our own MATCH clauses unlike in model scoping. We have where, pluck, and return here as
well in addition to all of the other clause-methods. See this page for more details.

9.2. Node 43

https://github.com/neo4jrb/neo4j-core/wiki/Queries

Neo4j.rb Documentation, Release 10.0.0

Note that when using the Query API if you make multiple calls to methods it will try to combine the calls together
into one clause and even to re-order them. If you want to avoid this you can use the #break method:

Creates a query representing the cypher: MATCH (q:Person), (r:Car) MATCH (p:
→˓Person)-->(q)
query_obj.match(q: Person).match('r:Car').break.match('(p: Person)-->(q)')

TODO Duplicate this page and link to it from here (or just duplicate it here): https://github.com/neo4jrb/
neo4j-core/wiki/Queries

See also:

9.2.4 #proxy_as

Sometimes it makes sense to turn a Query object into (or back into) a proxy object like you would get from an
association. In these cases you can use the Query#proxy_as method:

student.query_as(:s)
.match("(s)-[rel:FRIENDS_WITH*1..3]->(s2:Student")
.proxy_as(Student, :s2).lessons

Here we pick up the s2 variable with the scope of the Student model so that we can continue calling associations on it.

9.2.5 match_to and first_rel_to

There are two methods, match_to and first_rel_to that both make simple patterns easier.

In the most recent release, match_to accepts nodes; in the master branch and in future releases, it will accept a node
or an ID. It is essentially shorthand for association.where(neo_id: node.neo_id) and returns a QueryProxy object.

starting from a student, match them to a lesson based off of submitted params, then
→˓return students in their classes
student.lessons.match_to(params[:id]).students

first_rel_to will return the first relationship found between two nodes in a QueryProxy chain.

student.lessons.first_rel_to(lesson)
or in the master branch, future releases
student.lessons.first_rel_to(lesson.id)

This returns a relationship object.

9.2.6 Finding in Batches

Finding in batches will soon be supported in the neo4j gem, but for now is provided in the neo4j-core gem (documen-
tation)

9.2.7 Orm_Adapter

You can also use the orm_adapter API, by calling #to_adapter on your class. See the API, https://github.com/ianwhite/
orm_adapter

44 Chapter 9. Querying

https://github.com/neo4jrb/neo4j-core/wiki/Queries
https://github.com/neo4jrb/neo4j-core/wiki/Queries
https://github.com/ianwhite/orm_adapter
https://github.com/ianwhite/orm_adapter

Neo4j.rb Documentation, Release 10.0.0

9.2.8 Find or Create By. . .

QueryProxy has a find_or_create_by method to make the node rel creation process easier. Its usage is simple:

a_node.an_association(params_hash)

The method has branching logic that attempts to match an existing node and relationship. If the pattern is not found,
it tries to find a node of the expected class and create the relationship. If that doesn’t work, it creates the node, then
creates the relationship. The process is wrapped in a transaction to prevent a failure from leaving the database in an
inconsistent state.

There are some mild caveats. First, it will not work on associations of class methods. Second, you should not use it
across more than one associations or you will receive an error. For instance, if you did this:

student.friends.lessons.find_or_create_by(subject: 'Math')

Assuming the lessons association points to a Lesson model, you would effectively end up with this:

math = Lesson.find_or_create_by(subject: 'Math')
student.friends.lessons << math

. . . which is invalid and will result in an error.

9.2. Node 45

Neo4j.rb Documentation, Release 10.0.0

46 Chapter 9. Querying

CHAPTER 10

Query Examples

In the rest of the documentation for this site we try to lay out all of the pieces of the Neo4j.rb gems to explain them
one at a time. Sometimes, though, it can be instructive to see examples. The following are examples of code where
somebody had a question and the resulting code after fixes / refactoring. This section will expand over time as new
examples are found.

10.1 Example 1: Find all contacts for a user two hops away, but don’t
include contacts which are only one hop away

user.contacts(:contact, :knows, rel_length: 2).where_not(
uuid: user.contacts.pluck(:uuid)

)

This works, though it makes two queries. The first to get the uuid s for the where_not and the second for the full
query. For the first query, user.contacts.pluck(:id) could be also used instead, though associations already
have a pre-defined method to get IDs, so this could instead be user.contact_ids.

This doesn’t take care of the problem of having two queries, though. If we keep the rel_length: 2, however, we
won’t be able to reference the nodes which are one hop away in order. This seems like it would be a straightforward
solution:

user.contacts(:contact1).contacts(:contact2).where_not('contact1 = contact2')

And it is straightforward, but it won’t work. Because Cypher matches one subgraph at a time (in this case roughly
(:User)--(contact1:User)--(contact2:User)), contact one is always just going to be the node
which is in between the user in question and contact2. It doesn’t represent “all users which are one step away”. So
if we want to do this as one query, we do need to first get all of the first-level nodes together so that we can then check
if the second level nodes are in that list. This can be done as:

user.as(:user).contacts
.query_as(:contact).with(:user, first_level_ids: 'collect(ID(contact))')

(continues on next page)

47

Neo4j.rb Documentation, Release 10.0.0

(continued from previous page)

.proxy_as(User, :user)

.contacts(:other_contact, nil, rel_length: 2)

.where_not('ID(other_contact) IN first_level_ids')

And there we have a query which is much more verbose than the original code, but accomplishes the goal in a single
query. Having two queries isn’t neccessarily bad, so the code’s complexity should be weighed against how both
versions perform on real datasets.

10.2 Example 2: Simple Recommendation Engine

If you are interested in more complex collaborative filter methods check out this article.

Let’s assume you have the following schema:

(:User)-[:FOLLOW|:SKIP]->(:Page)

We want to recommend pages for a user to follow based on their current followed pages.

Constraints:

• We want to include the source of the recommendation. i.e (we recommend you follow X because you follow
Y).

Note : To do this part, we are going to use an APOC function apoc.coll.sortMaps.

• We want to exclude pages the user has skipped or already follows.

• The recommended pages must have a name field.

Given our schema, we could write the following Cypher to accomplish this:

MATCH (user:User { id: "1" })
MATCH (user)-[:FOLLOW]->(followed_page:Page)<-[:FOLLOW]-(co_user:User)
MATCH (co_user)-[:FOLLOW]->(rec_page:Page)
WHERE exists(rec_page.name)
AND NOT (user)-[:FOLLOW|:SKIP]->(rec_page)
WITH rec_page, count(rec_page) AS score, collect(followed_page.name) AS source_names
ORDER BY score DESC LIMIT {limit}
UNWIND source_names AS source_name
WITH rec_page, score, source_name, count(source_name) AS contrib
WITH rec_page, score, apoc.coll.sortMaps(collect({name:source_name, contrib:contrib*-
→˓1}), 'contrib') AS sources
RETURN rec_page.name AS name, score, extract(source IN sources[0..3] | source.name)
→˓AS top_sources,
size(sources) AS sources_count

ORDER BY score DESC

Now let’s see how we could write this using Node syntax in a User Ruby class.

class User
include ActiveGraph::Node

property :id, type: Integer

has_many :out, :followed_pages, type: :FOLLOW, model_class: :Page
has_many :out, :skipped_pages, type: :SKIP, model_class: :Page

(continues on next page)

48 Chapter 10. Query Examples

https://neo4j.com/blog/collaborative-filtering-creating-teams/
https://neo4j-contrib.github.io/neo4j-apoc-procedures/index33.html

Neo4j.rb Documentation, Release 10.0.0

(continued from previous page)

def recommended_pages
as(:user)

.followed_pages(:followed_page)
.where("exists(followed_page.name)")

.followers(:co_user)

.followed_pages

.query_as(:rec_page) # Transition into Core Query
.where("exists(rec_page.name)")
.where_not("(user)-[:FOLLOW|:SKIP]->(rec_page)")

.with("rec_page, count(rec_page) AS score, collect(followed_page.name) AS
→˓source_names")

.order_by('score DESC').limit(25)
.unwind(source_name: :source_names) # This generates "UNWIND source_names AS

→˓source_name"
.with("rec_page, score, source_name, count(source_name) AS contrib")
.with("rec_page, score, apoc.coll.sortMaps(collect({name:source_name,

→˓contrib:contrib*-1}), 'contrib') AS sources")
.with("rec_page.name AS name, score, extract(source in sources[0..3] | source.

→˓name) AS top_sources, size(sources) AS sources_count")
.order_by('score DESC')

.pluck(:name, :score, :top_sources, :sources_count)
end

end

Note : The contrib*-1 value is a way of getting the desired order out of the sortMaps APOC function without needing
to reverse the resulting list.

This assumes we have a Page class like the following:

class Page
include ActiveGraph::Node

property name, type: String

has_many :in, :followers, type: :FOLLOW, model_class: :User
has_many :in, :skippers, type: :SKIP, model_class: :User

end

10.2. Example 2: Simple Recommendation Engine 49

Neo4j.rb Documentation, Release 10.0.0

50 Chapter 10. Query Examples

CHAPTER 11

QueryClauseMethods

The ActiveGraph::Core::Query class gem defines a DSL which allows for easy creation of Neo4j Cypher
queries. They can be started from a session like so:

a_session.query
The current session for `Node` / `Relationship` in the `neo4j` gem can be retrieved
→˓with `ActiveGraph::Base.current_session`

Advantages of using the Query class include:

• Method chaining allows you to build a part of a query and then pass it somewhere else to be built further

• Automatic use of parameters when possible

• Ability to pass in data directly from other sources (like Hash to match keys/values)

• Ability to use native Ruby objects (such as translating nil values to IS NULL, regular expressions to Cypher-style
regular expression matches, etc. . .)

Below is a series of Ruby code samples and the resulting Cypher that would be generated. These examples are all
generated directly from the spec file and are thus all tested to work.

11.1 ActiveGraph::Core::Query

11.1.1 #match

Ruby

.match('n')

Cypher

MATCH n

51

http://neo4j.com/developer/cypher-query-language
http://neo4j.com/developer/cypher-query-language
https://github.com/neo4jrb/neo4j-core/blob/master/spec/neo4j-core/unit/query_spec.rb

Neo4j.rb Documentation, Release 10.0.0

Ruby

.match(:n)

Cypher

MATCH (n)

Ruby

.match(n: Person)

Cypher

MATCH (n:`Person`)

Ruby

.match(n: 'Person')

Cypher

MATCH (n:`Person`)

Ruby

.match(n: ':Person')

Cypher

MATCH (n:Person)

Ruby

.match(n: :Person)

Cypher

MATCH (n:`Person`)

Ruby

.match(n: [:Person, "Animal"])

Cypher

MATCH (n:`Person`:`Animal`)

Ruby

52 Chapter 11. QueryClauseMethods

Neo4j.rb Documentation, Release 10.0.0

.match(n: ' :Person')

Cypher

MATCH (n:Person)

Ruby

.match(n: nil)

Cypher

MATCH (n)

Ruby

.match(n: 'Person {name: "Brian"}')

Cypher

MATCH (n:Person {name: "Brian"})

Ruby

.match(n: {name: 'Brian', age: 33})

Cypher

MATCH (n {name: $n_name, age: {n_age}})

Parameters: {:n_name=>"Brian", :n_age=>33}

Ruby

.match(n: {Person: {name: 'Brian', age: 33}})

Cypher

MATCH (n:`Person` {name: $n_Person_name, age: $n_Person_age})

Parameters: {:n_Person_name=>"Brian", :n_Person_age=>33}

Ruby

.match('(n)--(o)')

Cypher

11.1. ActiveGraph::Core::Query 53

Neo4j.rb Documentation, Release 10.0.0

MATCH (n)--(o)

Ruby

.match('(n)--(o)', '(o)--(p)')

Cypher

MATCH (n)--(o), (o)--(p)

Ruby

.match('(n)--(o)').match('(o)--(p)')

Cypher

MATCH (n)--(o), (o)--(p)

11.1.2 #optional_match

Ruby

.optional_match(n: Person)

Cypher

OPTIONAL MATCH (n:`Person`)

Ruby

.match('(m)--(n)').optional_match('(n)--(o)').match('(o)--(p)')

Cypher

MATCH (m)--(n), (o)--(p) OPTIONAL MATCH (n)--(o)

11.1.3 #using

Ruby

.using('INDEX m:German(surname)')

Cypher

54 Chapter 11. QueryClauseMethods

Neo4j.rb Documentation, Release 10.0.0

USING INDEX m:German(surname)

Ruby

.using('SCAN m:German')

Cypher

USING SCAN m:German

Ruby

.using('INDEX m:German(surname)').using('SCAN m:German')

Cypher

USING INDEX m:German(surname) USING SCAN m:German

11.1.4 #where

Ruby

.where()

Cypher

Ruby

.where({})

Cypher

Ruby

.where('q.age > 30')

Cypher

WHERE (q.age > 30)

Ruby

11.1. ActiveGraph::Core::Query 55

Neo4j.rb Documentation, Release 10.0.0

.where('q.age' => 30)

Cypher

WHERE (q.age => $q_age)

Parameters: {:q_age=>30}

Ruby

.where('q.age' => [30, 32, 34])

Cypher

WHERE (q.age IN $q_age)

Parameters: {:q_age=>[30, 32, 34]}

Ruby

.where('q.age IN $age', age: [30, 32, 34])

Cypher

WHERE (q.age IN $age)

Parameters: {:age=>[30, 32, 34]}

Ruby

.where('(q.age IN $age)', age: [30, 32, 34])

Cypher

WHERE (q.age IN $age)

Parameters: {:age=>[30, 32, 34]}

Ruby

.where('q.name =~ ?', '.*test.*')

Cypher

WHERE (q.name =~ $question_mark_param)

Parameters: {:question_mark_param=>".*test.*"}

Ruby

56 Chapter 11. QueryClauseMethods

Neo4j.rb Documentation, Release 10.0.0

.where('(q.name =~ ?)', '.*test.*')

Cypher

WHERE (q.name =~ $question_mark_param)

Parameters: {:question_mark_param=>".*test.*"}

Ruby

.where('(LOWER(str(q.name)) =~ ?)', '.*test.*')

Cypher

WHERE (LOWER(str(q.name)) =~ $question_mark_param)

Parameters: {:question_mark_param=>".*test.*"}

Ruby

.where('q.age IN ?', [30, 32, 34])

Cypher

WHERE (q.age IN $question_mark_param)

Parameters: {:question_mark_param=>[30, 32, 34]}

Ruby

.where('q.age IN ?', [30, 32, 34]).where('q.age != ?', 60)

Cypher

WHERE (q.age IN $question_mark_param) AND (q.age != $question_mark_
→˓param2)

Parameters: {:question_mark_param=>[30, 32, 34], :question_mark_param2=>60}

Ruby

.where(q: {age: [30, 32, 34]})

Cypher

WHERE (q.age IN $q_age)

Parameters: {:q_age=>[30, 32, 34]}

Ruby

11.1. ActiveGraph::Core::Query 57

Neo4j.rb Documentation, Release 10.0.0

.where('q.age' => nil)

Cypher

WHERE (q.age IS NULL)

Ruby

.where(q: {age: nil})

Cypher

WHERE (q.age IS NULL)

Ruby

.where(q: {neo_id: 22})

Cypher

WHERE (ID(q) = $ID_q)

Parameters: {:ID_q=>22}

Ruby

.where(q: {age: 30, name: 'Brian'})

Cypher

WHERE (q.age = $q_age AND q.name = $q_name)

Parameters: {:q_age=>30, :q_name=>"Brian"}

Ruby

.where(q: {age: 30, name: 'Brian'}).where('r.grade = 80')

Cypher

WHERE (q.age = $q_age AND q.name = $q_name) AND (r.grade = 80)

Parameters: {:q_age=>30, :q_name=>"Brian"}

Ruby

.where(q: {name: /Brian.*/i})

Cypher

58 Chapter 11. QueryClauseMethods

Neo4j.rb Documentation, Release 10.0.0

WHERE (q.name =~ $q_name)

Parameters: {:q_name=>"(?i)Brian.*"}

Ruby

.where(name: /Brian.*/i)

Cypher

WHERE (name =~ $name)

Parameters: {:name=>"(?i)Brian.*"}

Ruby

.where(name: /Brian.*/i).where(name: /Smith.*/i)

Cypher

WHERE (name =~ $name) AND (name =~ $name2)

Parameters: {:name=>"(?i)Brian.*", :name2=>"(?i)Smith.*"}

Ruby

.where(q: {age: (30..40)})

Cypher

WHERE (q.age IN RANGE($q_age_range_min, $q_age_range_max))

Parameters: {:q_age_range_min=>30, :q_age_range_max=>40}

11.1.5 #where_not

Ruby

.where_not()

Cypher

Ruby

.where_not({})

Cypher

11.1. ActiveGraph::Core::Query 59

Neo4j.rb Documentation, Release 10.0.0

Ruby

.where_not('q.age > 30')

Cypher

WHERE NOT(q.age > 30)

Ruby

.where_not('q.age' => 30)

Cypher

WHERE NOT(q.age = $q_age)

Parameters: {:q_age=>30}

Ruby

.where_not('q.age IN ?', [30, 32, 34])

Cypher

WHERE NOT(q.age IN $question_mark_param)

Parameters: {:question_mark_param=>[30, 32, 34]}

Ruby

.where_not(q: {age: 30, name: 'Brian'})

Cypher

WHERE NOT(q.age = $q_age AND q.name = $q_name)

Parameters: {:q_age=>30, :q_name=>"Brian"}

Ruby

.where_not(q: {name: /Brian.*/i})

Cypher

WHERE NOT(q.name =~ $q_name)

Parameters: {:q_name=>"(?i)Brian.*"}

60 Chapter 11. QueryClauseMethods

Neo4j.rb Documentation, Release 10.0.0

Ruby

.where('q.age > 10').where_not('q.age > 30')

Cypher

WHERE (q.age > 10) AND NOT(q.age > 30)

Ruby

.where_not('q.age > 30').where('q.age > 10')

Cypher

WHERE NOT(q.age > 30) AND (q.age > 10)

11.1.6 #match_nodes

one node object

Ruby

.match_nodes(var: node_object)

Cypher

MATCH (var) WHERE (ID(var) = $ID_var)

Parameters: {:ID_var=>246}

Ruby

.optional_match_nodes(var: node_object)

Cypher

OPTIONAL MATCH (var) WHERE (ID(var) = $ID_var)

Parameters: {:ID_var=>246}

integer

Ruby

.match_nodes(var: 924)

Cypher

11.1. ActiveGraph::Core::Query 61

Neo4j.rb Documentation, Release 10.0.0

MATCH (var) WHERE (ID(var) = $ID_var)

Parameters: {:ID_var=>924}

two node objects

Ruby

.match_nodes(user: user, post: post)

Cypher

MATCH (user), (post) WHERE (ID(user) = $ID_user) AND (ID(post) = $ID_
→˓post)

Parameters: {:ID_user=>246, :ID_post=>123}

node object and integer

Ruby

.match_nodes(user: user, post: 652)

Cypher

MATCH (user), (post) WHERE (ID(user) = $ID_user) AND (ID(post) = $ID_
→˓post)

Parameters: {:ID_user=>246, :ID_post=>652}

11.1.7 #unwind

Ruby

.unwind('val AS x')

Cypher

UNWIND val AS x

Ruby

.unwind(x: :val)

Cypher

62 Chapter 11. QueryClauseMethods

Neo4j.rb Documentation, Release 10.0.0

UNWIND val AS x

Ruby

.unwind(x: 'val')

Cypher

UNWIND val AS x

Ruby

.unwind(x: [1,3,5])

Cypher

UNWIND [1, 3, 5] AS x

Ruby

.unwind(x: [1,3,5]).unwind('val as y')

Cypher

UNWIND [1, 3, 5] AS x UNWIND val as y

11.1.8 #return

Ruby

.return('q')

Cypher

RETURN q

Ruby

.return(:q)

Cypher

RETURN q

Ruby

11.1. ActiveGraph::Core::Query 63

Neo4j.rb Documentation, Release 10.0.0

.return('q.name, q.age')

Cypher

RETURN q.name, q.age

Ruby

.return(q: [:name, :age], r: :grade)

Cypher

RETURN q.name, q.age, r.grade

Ruby

.return(q: :neo_id)

Cypher

RETURN ID(q)

Ruby

.return(q: [:neo_id, :prop])

Cypher

RETURN ID(q), q.prop

11.1.9 #order

Ruby

.order('q.name')

Cypher

ORDER BY q.name

Ruby

.order_by('q.name')

Cypher

64 Chapter 11. QueryClauseMethods

Neo4j.rb Documentation, Release 10.0.0

ORDER BY q.name

Ruby

.order('q.age', 'q.name DESC')

Cypher

ORDER BY q.age, q.name DESC

Ruby

.order(q: :age)

Cypher

ORDER BY q.age

Ruby

.order(q: :neo_id)

Cypher

ORDER BY ID(q)

Ruby

.order(q: [:age, {name: :desc}])

Cypher

ORDER BY q.age, q.name DESC

Ruby

.order(q: [:age, {neo_id: :desc}])

Cypher

ORDER BY q.age, ID(q) DESC

Ruby

.order(q: [:age, {name: :desc, grade: :asc}])

Cypher

11.1. ActiveGraph::Core::Query 65

Neo4j.rb Documentation, Release 10.0.0

ORDER BY q.age, q.name DESC, q.grade ASC

Ruby

.order(q: [:age, {name: :desc, neo_id: :asc}])

Cypher

ORDER BY q.age, q.name DESC, ID(q) ASC

Ruby

.order(q: {age: :asc, name: :desc})

Cypher

ORDER BY q.age ASC, q.name DESC

Ruby

.order(q: {age: :asc, neo_id: :desc})

Cypher

ORDER BY q.age ASC, ID(q) DESC

Ruby

.order(q: [:age, 'name desc'])

Cypher

ORDER BY q.age, q.name desc

Ruby

.order(q: [:neo_id, 'name desc'])

Cypher

ORDER BY ID(q), q.name desc

11.1.10 #limit

Ruby

66 Chapter 11. QueryClauseMethods

Neo4j.rb Documentation, Release 10.0.0

.limit(3)

Cypher

LIMIT $limit_3

Parameters: {:limit_3=>3}

Ruby

.limit('3')

Cypher

LIMIT $limit_3

Parameters: {:limit_3=>3}

Ruby

.limit(3).limit(5)

Cypher

LIMIT $limit_5

Parameters: {:limit_3=>3, :limit_5=>5}

Ruby

.limit(nil)

Cypher

11.1.11 #skip

Ruby

.skip(5)

Cypher

SKIP $skip_5

Parameters: {:skip_5=>5}

Ruby

11.1. ActiveGraph::Core::Query 67

Neo4j.rb Documentation, Release 10.0.0

.skip('5')

Cypher

SKIP $skip_5

Parameters: {:skip_5=>5}

Ruby

.skip(5).skip(10)

Cypher

SKIP $skip_10

Parameters: {:skip_5=>5, :skip_10=>10}

Ruby

.offset(6)

Cypher

SKIP $skip_6

Parameters: {:skip_6=>6}

11.1.12 #with

Ruby

.with('n.age AS age')

Cypher

WITH n.age AS age

Ruby

.with('n.age AS age', 'count(n) as c')

Cypher

WITH n.age AS age, count(n) as c

Ruby

68 Chapter 11. QueryClauseMethods

Neo4j.rb Documentation, Release 10.0.0

.with(['n.age AS age', 'count(n) as c'])

Cypher

WITH n.age AS age, count(n) as c

Ruby

.with(age: 'n.age')

Cypher

WITH n.age AS age

11.2 #with_distinct

Ruby

.with_distinct('n.age AS age')

Cypher

WITH DISTINCT n.age AS age

Ruby

.with_distinct('n.age AS age', 'count(n) as c')

Cypher

WITH DISTINCT n.age AS age, count(n) as c

Ruby

.with_distinct(['n.age AS age', 'count(n) as c'])

Cypher

WITH DISTINCT n.age AS age, count(n) as c

Ruby

.with_distinct(age: 'n.age')

Cypher

11.2. #with_distinct 69

Neo4j.rb Documentation, Release 10.0.0

WITH DISTINCT n.age AS age

11.2.1 #create

Ruby

.create('(:Person)')

Cypher

CREATE (:Person)

Ruby

.create(:Person)

Cypher

CREATE (:Person)

Ruby

.create(age: 41, height: 70)

Cypher

CREATE ({age: $age, height: $height})

Parameters: {:age=>41, :height=>70}

Ruby

.create(Person: {age: 41, height: 70})

Cypher

CREATE (:`Person` {age: $Person_age, height: $Person_height})

Parameters: {:Person_age=>41, :Person_height=>70}

Ruby

.create(q: {Person: {age: 41, height: 70}})

Cypher

70 Chapter 11. QueryClauseMethods

Neo4j.rb Documentation, Release 10.0.0

CREATE (q:`Person` {age: $q_Person_age, height: {q_Person_height}})

Parameters: {:q_Person_age=>41, :q_Person_height=>70}

Ruby

.create(q: {Person: {age: nil, height: 70}})

Cypher

CREATE (q:`Person` {age: $q_Person_age, height: {q_Person_height}})

Parameters: {:q_Person_age=>nil, :q_Person_height=>70}

Ruby

.create(q: {:'Child:Person' => {age: 41, height: 70}})

Cypher

CREATE (q:`Child:Person` {age: $q_Child_Person_age, height: {q_Child_
→˓Person_height}})

Parameters: {:q_Child_Person_age=>41, :q_Child_Person_height=>70}

Ruby

.create(:'Child:Person' => {age: 41, height: 70})

Cypher

CREATE (:`Child:Person` {age: $Child_Person_age, height: {Child_Person_
→˓height}})

Parameters: {:Child_Person_age=>41, :Child_Person_height=>70}

Ruby

.create(q: {[:Child, :Person] => {age: 41, height: 70}})

Cypher

CREATE (q:`Child`:`Person` {age: $q_Child_Person_age, height: {q_Child_
→˓Person_height}})

Parameters: {:q_Child_Person_age=>41, :q_Child_Person_height=>70}

Ruby

11.2. #with_distinct 71

Neo4j.rb Documentation, Release 10.0.0

.create([:Child, :Person] => {age: 41, height: 70})

Cypher

CREATE (:`Child`:`Person` {age: $Child_Person_age, height: {Child_Person_
→˓height}})

Parameters: {:Child_Person_age=>41, :Child_Person_height=>70}

11.2.2 #create_unique

Ruby

.create_unique('(:Person)')

Cypher

CREATE UNIQUE (:Person)

Ruby

.create_unique(:Person)

Cypher

CREATE UNIQUE (:Person)

Ruby

.create_unique(age: 41, height: 70)

Cypher

CREATE UNIQUE ({age: $age, height: {height}})

Parameters: {:age=>41, :height=>70}

Ruby

.create_unique(Person: {age: 41, height: 70})

Cypher

CREATE UNIQUE (:`Person` {age: $Person_age, height: {Person_height}})

Parameters: {:Person_age=>41, :Person_height=>70}

Ruby

72 Chapter 11. QueryClauseMethods

Neo4j.rb Documentation, Release 10.0.0

.create_unique(q: {Person: {age: 41, height: 70}})

Cypher

CREATE UNIQUE (q:`Person` {age: $q_Person_age, height: {q_Person_height}}
→˓)

Parameters: {:q_Person_age=>41, :q_Person_height=>70}

11.2.3 #merge

Ruby

.merge('(:Person)')

Cypher

MERGE (:Person)

Ruby

.merge(:Person)

Cypher

MERGE (:Person)

Ruby

.merge(:Person).merge(:Thing)

Cypher

MERGE (:Person) MERGE (:Thing)

Ruby

.merge(age: 41, height: 70)

Cypher

MERGE ({age: $age, height: {height}})

Parameters: {:age=>41, :height=>70}

Ruby

11.2. #with_distinct 73

Neo4j.rb Documentation, Release 10.0.0

.merge(Person: {age: 41, height: 70})

Cypher

MERGE (:`Person` {age: $Person_age, height: {Person_height}})

Parameters: {:Person_age=>41, :Person_height=>70}

Ruby

.merge(q: {Person: {age: 41, height: 70}})

Cypher

MERGE (q:`Person` {age: $q_Person_age, height: {q_Person_height}})

Parameters: {:q_Person_age=>41, :q_Person_height=>70}

11.2.4 #delete

Ruby

.delete('n')

Cypher

DELETE n

Ruby

.delete(:n)

Cypher

DELETE n

Ruby

.delete('n', :o)

Cypher

DELETE n, o

Ruby

74 Chapter 11. QueryClauseMethods

Neo4j.rb Documentation, Release 10.0.0

.delete(['n', :o])

Cypher

DELETE n, o

Ruby

.detach_delete('n')

Cypher

DETACH DELETE n

Ruby

.detach_delete(:n)

Cypher

DETACH DELETE n

Ruby

.detach_delete('n', :o)

Cypher

DETACH DELETE n, o

Ruby

.detach_delete(['n', :o])

Cypher

DETACH DELETE n, o

11.2.5 #set_props

Ruby

.set_props('n = {name: "Brian"}')

Cypher

11.2. #with_distinct 75

Neo4j.rb Documentation, Release 10.0.0

SET n = {name: "Brian"}

Ruby

.set_props(n: {name: 'Brian', age: 30})

Cypher

SET n = $n_set_props

Parameters: {:n_set_props=>{:name=>"Brian", :age=>30}}

11.2.6 #set

Ruby

.set('n = {name: "Brian"}')

Cypher

SET n = {name: "Brian"}

Ruby

.set(n: {name: 'Brian', age: 30})

Cypher

SET n.`name` = $setter_n_name, n.`age` = $setter_n_age

Parameters: {:setter_n_name=>"Brian", :setter_n_age=>30}

Ruby

.set(n: {name: 'Brian', age: 30}, o: {age: 29})

Cypher

SET n.`name` = $setter_n_name, n.`age` = $setter_n_age, o.`age` =
→˓$setter_o_age

Parameters: {:setter_n_name=>"Brian", :setter_n_age=>30, :setter_o_age=>29}

Ruby

.set(n: {name: 'Brian', age: 30}).set_props('o.age = 29')

Cypher

76 Chapter 11. QueryClauseMethods

Neo4j.rb Documentation, Release 10.0.0

SET n.`name` = $setter_n_name, n.`age` = $setter_n_age, o.age = 29

Parameters: {:setter_n_name=>"Brian", :setter_n_age=>30}

Ruby

.set(n: :Label)

Cypher

SET n:`Label`

Ruby

.set(n: [:Label, 'Foo'])

Cypher

SET n:`Label`, n:`Foo`

Ruby

.set(n: nil)

Cypher

11.2.7 #on_create_set

Ruby

.on_create_set('n = {name: "Brian"}')

Cypher

ON CREATE SET n = {name: "Brian"}

Ruby

.on_create_set(n: {})

Cypher

Ruby

11.2. #with_distinct 77

Neo4j.rb Documentation, Release 10.0.0

.on_create_set(n: {name: 'Brian', age: 30})

Cypher

ON CREATE SET n.`name` = $setter_n_name, n.`age` = $setter_n_age

Parameters: {:setter_n_name=>"Brian", :setter_n_age=>30}

Ruby

.on_create_set(n: {name: 'Brian', age: 30}, o: {age: 29})

Cypher

ON CREATE SET n.`name` = $setter_n_name, n.`age` = $setter_n_age, o.
→˓`age` = $setter_o_age

Parameters: {:setter_n_name=>"Brian", :setter_n_age=>30, :setter_o_age=>29}

Ruby

.on_create_set(n: {name: 'Brian', age: 30}).on_create_set('o.age = 29')

Cypher

ON CREATE SET n.`name` = $setter_n_name, n.`age` = $setter_n_age, o.age
→˓= 29

Parameters: {:setter_n_name=>"Brian", :setter_n_age=>30}

11.2.8 #on_match_set

Ruby

.on_match_set('n = {name: "Brian"}')

Cypher

ON MATCH SET n = {name: "Brian"}

Ruby

.on_match_set(n: {})

Cypher

Ruby

78 Chapter 11. QueryClauseMethods

Neo4j.rb Documentation, Release 10.0.0

.on_match_set(n: {name: 'Brian', age: 30})

Cypher

ON MATCH SET n.`name` = $setter_n_name, n.`age` = $setter_n_age

Parameters: {:setter_n_name=>"Brian", :setter_n_age=>30}

Ruby

.on_match_set(n: {name: 'Brian', age: 30}, o: {age: 29})

Cypher

ON MATCH SET n.`name` = $setter_n_name, n.`age` = $setter_n_age, o.`age`
→˓= $setter_o_age

Parameters: {:setter_n_name=>"Brian", :setter_n_age=>30, :setter_o_age=>29}

Ruby

.on_match_set(n: {name: 'Brian', age: 30}).on_match_set('o.age = 29')

Cypher

ON MATCH SET n.`name` = $setter_n_name, n.`age` = $setter_n_age, o.age =
→˓29

Parameters: {:setter_n_name=>"Brian", :setter_n_age=>30}

11.2.9 #remove

Ruby

.remove('n.prop')

Cypher

REMOVE n.prop

Ruby

.remove('n:American')

Cypher

REMOVE n:American

Ruby

11.2. #with_distinct 79

Neo4j.rb Documentation, Release 10.0.0

.remove(n: 'prop')

Cypher

REMOVE n.prop

Ruby

.remove(n: :American)

Cypher

REMOVE n:`American`

Ruby

.remove(n: [:American, "prop"])

Cypher

REMOVE n:`American`, n.prop

Ruby

.remove(n: :American, o: 'prop')

Cypher

REMOVE n:`American`, o.prop

Ruby

.remove(n: ':prop')

Cypher

REMOVE n:`prop`

11.2.10 #start

Ruby

.start('r=node:nodes(name = "Brian")')

Cypher

80 Chapter 11. QueryClauseMethods

Neo4j.rb Documentation, Release 10.0.0

START r=node:nodes(name = "Brian")

Ruby

.start(r: 'node:nodes(name = "Brian")')

Cypher

START r = node:nodes(name = "Brian")

11.2.11 clause combinations

Ruby

.match(q: Person).where('q.age > 30')

Cypher

MATCH (q:`Person`) WHERE (q.age > 30)

Ruby

.where('q.age > 30').match(q: Person)

Cypher

MATCH (q:`Person`) WHERE (q.age > 30)

Ruby

.where('q.age > 30').start('n').match(q: Person)

Cypher

START n MATCH (q:`Person`) WHERE (q.age > 30)

Ruby

.match(q: {age: 30}).set_props(q: {age: 31})

Cypher

MATCH (q {age: {q_age}}) SET q = $q_set_props

Parameters: {:q_age=>30, :q_set_props=>{:age=>31}}

Ruby

11.2. #with_distinct 81

Neo4j.rb Documentation, Release 10.0.0

.match(q: Person).with('count(q) AS count')

Cypher

MATCH (q:`Person`) WITH count(q) AS count

Ruby

.match(q: Person).with('count(q) AS count').where('count > 2')

Cypher

MATCH (q:`Person`) WITH count(q) AS count WHERE (count > 2)

Ruby

.match(q: Person).with(count: 'count(q)').where('count > 2').with(new_
→˓count: 'count + 5')

Cypher

MATCH (q:`Person`) WITH count(q) AS count WHERE (count > 2) WITH count +
→˓5 AS new_count

Ruby

.match(q: Person).match('r:Car').break.match('(p: Person)-->q')

Cypher

MATCH (q:`Person`), r:Car MATCH (p: Person)-->q

Ruby

.match(q: Person).break.match('r:Car').break.match('(p: Person)-->q')

Cypher

MATCH (q:`Person`) MATCH r:Car MATCH (p: Person)-->q

Ruby

.match(q: Person).match('r:Car').break.break.match('(p: Person)-->q')

Cypher

MATCH (q:`Person`), r:Car MATCH (p: Person)-->q

Ruby

82 Chapter 11. QueryClauseMethods

Neo4j.rb Documentation, Release 10.0.0

.with(:a).order(a: {name: :desc}).where(a: {name: 'Foo'})

Cypher

WITH a ORDER BY a.name DESC WHERE (a.name = $a_name)

Parameters: {:a_name=>"Foo"}

Ruby

.with(:a).limit(2).where(a: {name: 'Foo'})

Cypher

WITH a LIMIT $limit_2 WHERE (a.name = $a_name)

Parameters: {:a_name=>"Foo", :limit_2=>2}

Ruby

.with(:a).order(a: {name: :desc}).limit(2).where(a: {name: 'Foo'})

Cypher

WITH a ORDER BY a.name DESC LIMIT $limit_2 WHERE (a.name = $a_name)

Parameters: {:a_name=>"Foo", :limit_2=>2}

Ruby

.order(a: {name: :desc}).with(:a).where(a: {name: 'Foo'})

Cypher

WITH a ORDER BY a.name DESC WHERE (a.name = $a_name)

Parameters: {:a_name=>"Foo"}

Ruby

.limit(2).with(:a).where(a: {name: 'Foo'})

Cypher

WITH a LIMIT $limit_2 WHERE (a.name = $a_name)

Parameters: {:a_name=>"Foo", :limit_2=>2}

Ruby

11.2. #with_distinct 83

Neo4j.rb Documentation, Release 10.0.0

.order(a: {name: :desc}).limit(2).with(:a).where(a: {name: 'Foo'})

Cypher

WITH a ORDER BY a.name DESC LIMIT $limit_2 WHERE (a.name = $a_name)

Parameters: {:a_name=>"Foo", :limit_2=>2}

Ruby

.with('1 AS a').where(a: 1).limit(2)

Cypher

WITH 1 AS a WHERE (a = $a) LIMIT $limit_2

Parameters: {:a=>1, :limit_2=>2}

Ruby

.match(q: Person).where('q.age = $age').params(age: 15)

Cypher

MATCH (q:`Person`) WHERE (q.age = $age)

Parameters: {:age=>15}

84 Chapter 11. QueryClauseMethods

CHAPTER 12

Configuration

To configure any of these variables you can do the following:

12.1 In Rails

In either config/application.rb or one of the environment configurations (e.g. config/environments/
development.rb) you can set config.neo4j.variable_name = value where variable_name and
value are as described below.

12.2 Other Ruby apps

You can set configuration variables directly in the Neo4j configuration class like so:
ActiveGraph::Config[:variable_name] = value where variable_name and value are as described
below.

12.3 Variables

association_model_namespace Default: nil

Associations defined in node models will try to match association names to classes. For example,
has_many :out, :student will look for a Student class. To avoid having to use model_class:
'MyModule::Student', this config option lets you specify the module that should be used globally for
class name discovery.

Of course, even with this option set, you can always override it by calling model_class: 'ClassName'.

class_name_property Default: :_classname

Which property should be used to determine the Node class to wrap the node in

If there is no value for this property on a node the node‘s labels will be used to determine the Node class

85

Neo4j.rb Documentation, Release 10.0.0

See also:

Wrapping

enums_case_sensitive Default: false

Determins whether enums property setters should be case sensitive or not.

See also:

Enums

include_root_in_json Default: true

When serializing Node and Relationship objects, should there be a root in the JSON of the model name.

See also:

http://api.rubyonrails.org/classes/ActiveModel/Serializers/JSON.html

logger Default: nil (or Rails.logger in Rails)

A Ruby Logger object which is used to log Cypher queries (info level is used). This is only for the neo4j
gem (that is, for models created with the Node and Relationship modules).

module_handling Default: :none

Available values: :demodulize, :none, proc

Determines what, if anything, should be done to module names when a model’s class is set. By default, there is
a direct mapping of an Node model name to the node label or an Relationship model to the relationship
type, so MyModule::MyClass results in a label with the same name.

The :demodulize option uses ActiveSupport’s method of the same name to strip off modules. If you use a proc,
it will the class name as an argument and you should return a string that modifies it as you see fit.

pretty_logged_cypher_queries Default: nil

If true, format outputted queries with newlines and colors to be more easily readable by humans

record_timestamps Default: false

A Rails-inspired configuration to manage inclusion of the Timestamps module. If set to true, all Node and Rela-
tionship models will include the Timestamps module and have :created_at and :updated_at properties.

skip_migration_check Default: false

Prevents the neo4j gem from raising ActiveGraph::PendingMigrationError in web requests when
migrations haven’t been run. For environments (like testing) where you need to use the neo4j:schema:load
rake task to build the database instead of migrations. Automatically set to true in Rails test environments by
default

timestamp_type Default: DateTime

This method returns the specified default type for the :created_at and :updated_at timestamps. You
can also specify another type (e.g. Integer).

transform_rel_type Default: :upcase

Available values: :upcase, :downcase, :legacy, :none

Determines how relationship types for Relationship models are transformed when stored in the database.
By default this is upper-case to match with Neo4j convention so if you specify an Relationship model of
HasPost then the relationship type in the database will be HAS_POST

:legacy Causes the type to be downcased and preceded by a #

:none Uses the type as specified

86 Chapter 12. Configuration

http://api.rubyonrails.org/classes/ActiveModel/Serializers/JSON.html

Neo4j.rb Documentation, Release 10.0.0

wait_for_connection Default: false

This allows you to tell the gem to wait for up to 60 seconds for Neo4j to be available. This is useful in environ-
ments such as Docker Compose. This is currently only for Rails

verbose_query_logs Default: false

Specifies that queries outputted to the log also get a source file / line outputted to aid debugging.

12.4 Instrumented events

The activegraph gem instruments a handful of events so that users can subscribe to them to do logging, metrics,
or anything else that they need. For example, to create a block which is called any time a query is made via the gem:

ActiveGraph::Base.subscribe_to_query do |message|
puts message

end

The argument to the block (message in this case) will be an ANSI formatted string which can be outputted or stored.
If you want to access this event at a lower level, subscribe_to_query is actually tied to the neo4j.core.
cypher_query event to which you could subscribe to like:

ActiveSupport::Notifications.subscribe('neo4j.core.cypher_query') do |name, start,
→˓finish, id, payload|
puts payload[:query].to_cypher
or
payload[:query].print_cypher

puts "Query took: #{(finish - start)} seconds"
end

All methods and their corresponding events:

ActiveGraph::Base.subscribe_to_query neo4j.core.cypher_query

ActiveGraph::Base.subscribe_to_request neo4j.core.http.request

12.4. Instrumented events 87

Neo4j.rb Documentation, Release 10.0.0

88 Chapter 12. Configuration

CHAPTER 13

Migrations

Neo4j does not have a set schema like relational databases, but sometimes changes to the schema and the data are
required. To help with this, Neo4j.rb provides an ActiveRecord-like migration framework and a set of helper
methods to manipulate both database schema and data. Just like ActiveRecord, a record of which transactions
have been run will be stored in the database so that a migration is automatically only run once per environment.

Note: If you are new to Neo4j, note that properties on nodes and relationships are not defined ahead of time.
Properties can be added and removed on the fly, and so adding a property to your Node or Relationship
model is sufficient to start storing data. No migration is needed to add properties, but if you remove a property from
your model you may want a migration to cleanup the data (by using the remove_property, for example).

Note: The migration functionality described on this page was introduced in version 8.0 of the neo4j gem.

13.1 Generators

Migrations can be created by using the built-in Rails generator:

rails generate neo4j:migration RenameUserNameToFirstName

This will generate a new file located in db/neo4j/migrate/xxxxxxxxxx_rename_user_name_to_first_name.
rb

class RenameUserNameToFirstName < ActiveGraph::Migrations::Base
def up
rename_property :User, :name, :first_name

end

def down
rename_property :User, :first_name, :name

(continues on next page)

89

Neo4j.rb Documentation, Release 10.0.0

(continued from previous page)

end
end

In the same way as ActiveRecord does, you should fill up the up and down methods to define the migration and
(eventually) the rollback steps.

13.2 Transactions

Every migrations runs inside a transaction by default. So, if some statement fails inside a migration fails, the database
rollbacks to the previous state.

However this behaviour is not always good. For instance, neo4j doesn’t allow schema and data changes in the same
transaction.

To disable this, you can use the disable_transactions! helper in your migration definition:

class SomeMigration < ActiveGraph::Migrations::Base
disable_transactions!

...
end

13.3 The schema file

When generating an empty database for your app you could run all of your migrations, but this strategy gets slower
over time and can even cause issues if your older migrations become incompatible with your newer code. For this
reason, whenever you run migrations a db/neo4j/schema.yml file is created which keeps track of constraints,
indexes (which aren’t automatically created by constraints), and which migrations have been run. This schema file can
then be loaded with the neo4j:schema:load rake task to quickly and safely setup a blank database for testing or
for a new environment. While the neo4j:migrate rake task automatically creates the schema.yml file, if you
ever need to generate it yourself you can use the neo4j:schema:dump rake task.

It is suggested that you check in the db/neo4j/schema.yml to your repository whenever you have new migra-
tions.

13.4 Tasks

Neo4j.rb implements a clone of the ActiveRecord migration tasks API to migrate.

13.4.1 neo4j:migrate:all

Runs any pending migration.

rake neo4j:migrate:all

90 Chapter 13. Migrations

Neo4j.rb Documentation, Release 10.0.0

13.4.2 neo4j:migrate

An alias for rake neo4j:migrate:all.

rake neo4j:migrate:all

13.4.3 neo4j:migrate:up

Executes a migration given it’s version id.

rake neo4j:migrate:up VERSION=some_version

13.4.4 neo4j:migrate:down

Reverts a migration given it’s version id.

rake neo4j:migrate:down VERSION=some_version

13.4.5 neo4j:migrate:status

Prints a detailed migration state report, showing up and down migrations together with their own version id.

rake neo4j:migrate:status

13.4.6 neo4j:rollback

Reverts the last up migration. You can additionally pass a STEPS parameter, specifying how many migration you
want to revert.

rake neo4j:rollback

13.4.7 neo4j:schema:dump

Reads the current database and generates a db/neo4j/schema.yml file to track constraints, indexes, and migra-
tions which have been run (runs automatically after the neo4j:migrate task)

rake neo4j:schema:dump

13.4.8 neo4j:schema:load

Reads the db/neo4j/schema.yml file and loads the constraints, indexes, and migration nodes into the database.
The default behavior is to only add, but an argument can be passed in to tell the task to remove any indexes / constraints
that were found in the database which were not in the schema.yml file.

rake neo4j:schema:load
rake neo4j:schema:load[true] # Remove any constraints or indexes which aren't in the
→˓``schema.yml`` file

13.4. Tasks 91

Neo4j.rb Documentation, Release 10.0.0

13.5 Integrate Neo4j.rb with ActiveRecord migrations

You can setup Neo4j migration tasks to run together with standard ActiveRecord ones. Simply create a new rake task
in lib/tasks/neo4j_migrations.rake:

Rake::Task['db:migrate'].enhance ['neo4j:migrate']

This will run the neo4j:migrate every time you run a rake db:migrate

13.6 Migration Helpers

13.6.1 #execute

Executes a pure neo4j cypher query, interpolating parameters.

execute('MATCH (n) WHERE n.name = {node_name} RETURN n', node_name: 'John')

execute('MATCH (n)-[r:`friend`]->() WHERE n.age = 7 DELETE r')

13.6.2 #query

An alias for ActiveGraph::Session.query. You can use it as root for the query builder:

query.match(:n).where(name: 'John').delete(:n).exec

13.6.3 #remove_property

Removes a property given a label.

remove_property(:User, :money)

13.6.4 #rename_property

Renames a property given a label.

rename_property(:User, :name, :first_name)

13.6.5 #drop_nodes

Removes all nodes with a certain label

drop_nodes(:User)

92 Chapter 13. Migrations

Neo4j.rb Documentation, Release 10.0.0

13.6.6 #add_label

Adds a label to nodes, given their current label

add_label(:User, :Person)

13.6.7 #add_labels

Adds labels to nodes, given their current label

add_label(:User, [:Person, :Boy])

13.6.8 #remove_label

Removes a label from nodes, given a label

remove_label(:User, :Person)

13.6.9 #remove_labels

Removes labels from nodes, given a label

remove_label(:User, [:Person, :Boy])

13.6.10 #rename_label

Renames a label

rename_label(:User, :Person)

13.6.11 #add_constraint

Adds a new unique constraint on a given label attribute.

Warning it would fail if you make data changes in the same migration. To fix, define disable_transactions!
in your migration file.

add_constraint(:User, :name)

Use force: true as an option in the third argument to ignore errors about an already existing constraint.

13.6.12 #drop_constraint

Drops an unique constraint on a given label attribute.

Warning it would fail if you make data changes in the same migration. To fix, define disable_transactions!
in your migration file.

13.6. Migration Helpers 93

Neo4j.rb Documentation, Release 10.0.0

drop_constraint(:User, :name)

Use force: true as an option in the third argument to ignore errors about the constraint being missing.

13.6.13 #add_index

Adds a new exact index on a given label attribute.

Warning it would fail if you make data changes in the same migration. To fix, define disable_transactions!
in your migration file.

add_index(:User, :name)

Use force: true as an option in the third argument to ignore errors about an already existing index.

13.6.14 #drop_index

Drops an exact index on a given label attribute.

Warning it would fail if you make data changes in the same migration. To fix, define disable_transactions!
in your migration file.

drop_index(:User, :name)

Use force: true as an option in the third argument to ignore errors about the index being missing.

13.6.15 #say

Writes some text while running the migration.

Ruby

say 'Hello'

Output

-- Hello

When passing true as second parameter, it writes it more indented.

Ruby

say 'Hello', true

Output

-> Hello

13.6.16 #say_with_time

Wraps a set of statements inside a block, printing the given and the execution time. When an Integer is returned, it
assumes it’s the number of affected rows.

Ruby

94 Chapter 13. Migrations

Neo4j.rb Documentation, Release 10.0.0

say_with_time 'Trims all names' do
query.match(n: :User).set('n.name = TRIM(n.name)').pluck('count(*)').

→˓first
end

Output

-- Trims all names.
-> 0.3451s
-> 2233 rows

13.6.17 #populate_id_property

Populates the uuid property (or any id_property you defined) of nodes given their model name.

populate_id_property :User

Check Adding IDs to Existing Data for more usage details.

13.6.18 #relabel_relation

Relabels a relationship, keeping intact any relationship attribute.

relabel_relation :old_label, :new_label

Additionally you can specify the starting and the destination node, using :from and :to.

You can specify also the :direction (one if :in, :out or :both).

Example:

relabel_relation :friends, :FRIENDS, from: :Animal, to: :Person, direction: :both

13.6.19 #change_relations_style

Relabels relationship nodes from one format to another.

Usage:

change_relations_style list_of_labels, old_style, new_style

For example, if you created a relationship #foo in 3.x, and you want to convert it to the 4.x+ foo syntax, you could
run this.

change_relations_style [:all, :your, :labels, :here], :lower_hash, :lower

Allowed styles are:

• :lower: lowercase string, like my_relation

• :upper: uppercase string, like MY_RELATION

• :lower_hash: Lowercase string starting with hash, like #my_relation

13.6. Migration Helpers 95

Neo4j.rb Documentation, Release 10.0.0

96 Chapter 13. Migrations

CHAPTER 14

Testing

To run your tests, you must have a Neo4j server running (ideally a different server than the development database on
a different port). One quick way to get a test database up and running is to use the built in rake task:

rake neo4j:install[community-latest,test]
or a specific version
rake neo4j:install[community-3.1.0,test]

You can configure it to respond on a different port like so:

rake neo4j:config[test,7475]

If you are using Rails, you can edit the test configuration config/environments/test.rb or the config/
neo4j.yml file (see Setup)

14.1 How to clear the database

14.1.1 Cypher DELETE

This is the most reliable way to clear your database in Neo4j

// For version of Neo4j after 2.3.0
// DETACH DELETE takes care of removing relationships for you
MATCH (n) DETACH DELETE n

In Ruby:

ActiveGraph::Base.query('MATCH (n) DETACH DELETE n')

If you are using Node and/or Relationship from the activegraph gem you will no doubt have
SchemaMigration nodes in the database. If you delete these nodes the gem will complain that your migrations
haven’t been run. To get around this you could modify the query to exclude those nodes:

97

Neo4j.rb Documentation, Release 10.0.0

MATCH (n) WHERE NOT n:`ActiveGraph::Migrations::SchemaMigration`
DETACH DELETE n

14.1.2 The database_cleaner gem

The database_cleaner gem is a popular and useful tool for abstracting away the cleaning of databases in tests.
There is support for Neo4j in the database_cleaner gem, but there are a couple of problems with it:

• Neo4j does not currently support truncation (wiping of the entire database designed to be faster than a DELETE)

• Neo4j supports transactions, but nested transactions do not work the same as in relational databases. (see below)

Because of this, all strategies in the database_cleaner gem amount to it’s “Deletion” strategy. Therefore, while
you are welcome to use the database_cleaner gem, is is generally simpler to execute one of the above Cypher
queries.

14.1.3 Delete data files

Completely delete the database files (slower, by removeds schema). If you installed Neo4j via the
neo4j-rake_tasks gem, you can run:

rake neo4j:reset_yes_i_am_sure[test]

If you are using embedded Neo4j, stop embedded db, delete the db path, start embedded db.

14.1.4 RSpec Transaction Rollback

If you are using RSpec you can perform tests in a transaction as you would using ActiveRecord. Just add the following
to your rspec configuration in spec/rails_helper.rb or spec/spec_helper.rb

For the `neo4j` gem
config.around do |example|

ActiveGraph::Base.transaction do |tx|
example.run
tx.failure

end
end

There is one big disadvantage to this approach though: In Neo4j, nested transactions still act as one big transaction. If
the code you are testing has a transaction which, for example, gets marked as failed, then the transaction around the
RSpec example will be marked as failed.

14.1.5 Using Rack::Test

If you’re using the Rack::Test <https://github.com/rack-test/rack-test> gem to test your Neo4j-enabled web applica-
tion from the outside, be aware that the Rack::Test::Methods mixin won’t work with this driver. Instead, use the
Rack::Test::Session approach as described in the Sinatra documentation <http://sinatrarb.com/testing.html>.

98 Chapter 14. Testing

CHAPTER 15

Contributing

We very much welcome contributions! Before contributing there are a few things that you should know about the
neo4j.rb projects:

15.1 The Neo4j.rb Project

We have two main gems: activegraph, neo4j-ruby-driver.

We try to follow semantic versioning based on semver.org <http://semver.org/>

15.2 Low Hanging Fruit

Just reporting issues is helpful, but if you want to help with some code we label our GitHub issues with
low-hanging-fruit to make it easy for somebody to start helping out:

https://github.com/neo4jrb/neo4j/labels/low-hanging-fruit

https://github.com/neo4jrb/neo4j-core/labels/low-hanging-fruit

https://github.com/neo4jrb/neo4j-rake_tasks/labels/low-hanging-fruit

Help or discussion on other issues is welcome, just let us know!

15.3 Communicating With the Neo4j.rb Team

GitHub issues are a great way to submit new bugs / ideas. Of course pull requests are welcome (though please check
with us first if it’s going to be a large change).

We hang out mostly in our Gitter.im chat room and are happy to talk or answer questions. We also are often around on
the Neo4j-Users Slack group.

99

https://github.com/neo4jrb/activegraph
https://github.com/neo4jrb/neo4j-ruby-driver
https://github.com/neo4jrb/neo4j/labels/low-hanging-fruit
https://github.com/neo4jrb/neo4j-core/labels/low-hanging-fruit
https://github.com/neo4jrb/neo4j-rake_tasks/labels/low-hanging-fruit
https://gitter.im/neo4jrb/neo4j
http://neo4j.com/blog/public-neo4j-users-slack-group/

Neo4j.rb Documentation, Release 10.0.0

15.4 Running Specs

For running the specs, see our spec/README.md

15.5 Before you submit your pull request

15.5.1 Automated Tools

We use:

• RSpec

• Rubocop

• Coveralls

Please try to check at least the RSpec tests and Rubocop before making your pull request. Guardfile and .
overcommit.yml files are available if you would like to use guard (for RSpec and rubocop) and/or overcommit.

We also use Travis CI to make sure all of these pass for each pull request. Travis runs the specs across multiple
versions of Ruby and multiple Neo4j databases, so be aware of that for potential build failures.

15.5.2 Documentation

To aid our users, we try to keep a complete CHANGELOG.md file. We use keepachangelog.com as a guide. We
appreciate a line in the CHANGELOG.md as part of any changes.

We also use Sphinx / reStructuredText for our documentation which is published on readthedocs.org. We also appre-
ciate your help in documenting any user-facing changes.

Notes about our documentation setup:

• YARD documentation in code is also parsed and placed into the Sphinx site so that is also welcome. Note that
reStructuredText inside of your YARD docs will render more appropriately.

• You can use rake docs to build the documentation locally and rake docs:open to open it in your web
browser.

• Please make sure that you run rake docs before committing any documentation changes and checkin all
changes to docs/.

100 Chapter 15. Contributing

https://github.com/neo4jrb/neo4j/blob/master/spec/README.md
http://rspec.info/
https://github.com/bbatsov/rubocop
https://coveralls.io
http://keepachangelog.com/
http://neo4jrb.readthedocs.org/

CHAPTER 16

Additional Resources

The following is a list of resources where you can learn more about using Neo4j with Ruby.

• Neo4j.rb Screencast Series

• How NEO4J Saved my Relationship by Coraline Ada Ehmke

• Why You Should Use Neo4j in Your Next Ruby App

• Query or QueryProxy?

• Getting Started with Neo4j and Ruby

• Example Sinatra applications

– Using the neo4j gem

– Using only the neo4j-core gem

101

https://www.youtube.com/playlist?list=PL5klM3mD6alLUhNTPTbj5a3GBjU7oZN0t
http://confreaks.tv/videos/bathruby2016-how-neo4j-saved-my-relationship
https://www.sitepoint.com/why-you-should-use-neo4j-in-your-next-ruby-app/#comment-2689399402
http://neo4jrb.io/blog/2015/02/08/query_or_query-proxy.html
http://neo4j.com/developer/ruby-course/
https://github.com/neo4j-examples/movies-ruby-neo4jrb
https://github.com/neo4j-examples/movies-ruby-neo4j-core

Neo4j.rb Documentation, Release 10.0.0

102 Chapter 16. Additional Resources

CHAPTER 17

Helper Gems

17.1 devise-activegraph

devise-activegraph is an adaptor gem for using the devise authentication library with ActiveGraph.

17.2 cancancan-activegraph

The cancancan-neo4j gem is the neo4j adapter for the CanCanCan authorisation library. This gem will help you
seamlessly integrate cancan gem to your Ruby/Rails app wich has Neo4j as database.

17.3 neo4j-paperclip

Currently not compatible with activegraph The neo4jrb-paperclip gem allows easy use of the paperclip gem
in Node and Relationship models.

17.4 neo4jrb_spatial

Obsolete due to native neo4j data types. The neo4jrb_spatial gem add the ability to work with the Neo4j Spatial server
plugin via the neo4j and neo4j-core gems

17.5 neo4j-rspec

Currently not compatible with activegraph The neo4j-rspec gem adds RSpec matchers for easier testing of Node
and Relationship models.

103

https://github.com/neo4jrb/devise-activegraph
https://github.com/CanCanCommunity/cancancan-neo4j
https://github.com/canCanCommunity/cancancan
https://github.com/l4u/neo4jrb-paperclip
https://github.com/neo4jrb/neo4jrb_spatial
https://github.com/sineed/neo4j-rspec

Neo4j.rb Documentation, Release 10.0.0

ActiveGraph (the activegraph gem) is a Ruby Object-Graph-Mapper (OGM) for the Neo4j graph database. It tries to
follow API conventions established by ActiveRecord and familiar to most Ruby developers but with a Neo4j flavor.

Ruby (software) A dynamic, open source programming language with a focus on simplicity and productivity. It has
an elegant syntax that is natural to read and easy to write.

Graph Database (computer science) A graph database stores data in a graph, the most generic of data structures,
capable of elegantly representing any kind of data in a highly accessible way.

Neo4j (databases) The world’s leading graph database

If you’re already familiar with ActiveRecord, DataMapper, or Mongoid, you’ll find the Object Model features you’ve
come to expect from an O*M:

• Properties

• Indexes / Constraints

• Callbacks

• Validation

• Associations

Because relationships are first-class citizens in Neo4j, models can be created for both nodes and relationships.

104 Chapter 17. Helper Gems

https://github.com/neo4jrb/activegraph
https://www.ruby-lang.org/en/
http://neo4j.com/
http://guides.rubyonrails.org/active_record_basics.html

CHAPTER 18

Additional features include

• A chainable arel-inspired query builder

• Transactions

• Migration framework

105

https://github.com/rails/arel

Neo4j.rb Documentation, Release 10.0.0

106 Chapter 18. Additional features include

CHAPTER 19

Requirements

• Ruby 2.5 + (tested in MRI and JRuby)

• Neo4j 3.4 +

107

Neo4j.rb Documentation, Release 10.0.0

108 Chapter 19. Requirements

CHAPTER 20

Indices and tables

• genindex

• modindex

• search

109

Neo4j.rb Documentation, Release 10.0.0

110 Chapter 20. Indices and tables

Index

A
association_model_namespace, 85

C
class_name_property, 85

E
enums_case_sensitive, 86

I
include_root_in_json, 86

L
logger, 86

M
module_handling, 86

N
neo4j:config, 11
neo4j:generate_schema_migration, 11
neo4j:install, 11
neo4j:restart, 12
neo4j:shell, 12
neo4j:start, 11
neo4j:start_no_wait, 12
neo4j:stop, 12

P
pretty_logged_cypher_queries, 86

R
record_timestamps, 86

S
skip_migration_check, 86

T
timestamp_type, 86

transform_rel_type, 86

V
verbose_query_logs, 87

W
wait_for_connection, 87

111

	Introduction
	Terminology
	Neo4j
	ActiveGraph

	Code Examples
	Node

	Setup

	Setup
	Ruby on Rails
	Generating a new app
	Adding the gem to an existing project
	Rails configuration

	Any Ruby Project
	Driver Instance

	What if I’m integrating with a pre-existing Neo4j database?
	Heroku

	Upgrade Guide
	How to upgrade to activegraph?
	Transaction API
	Exceptions

	Rake Tasks
	Node
	Properties
	Labels
	Indexes and Constraints
	Labels
	Serialization
	Enums

	Scopes
	Wrapping
	Callbacks
	created_at, updated_at
	Validation
	id property (primary key)
	Associations
	Updating Associations
	Polymorphic Associations
	Dependent Associations
	Association Options
	Creating Unique Relationships
	Eager Loading

	Relationship
	When to Use?
	Setup
	Relationship Creation
	From an Relationship Model
	From a has_many or has_one association
	Creating Unique Relationships

	Query and Loading existing relationships
	:each_rel, :each_with_rel, or :pluck methods

	Accessing related nodes
	Advanced Usage
	Separation of Relationship Logic

	Additional methods
	Regarding: from and to

	Properties
	Validations
	Undeclared Properties
	Types and Conversion
	Custom Converters

	Unique IDs
	Defining your own ID
	Using internal Neo4j IDs as id_property
	A note regarding constraints
	Adding IDs to Existing Data
	Working with Legacy Schemas

	Querying
	Introduction
	Node
	Simple Query Methods
	Proxy Method Chaining
	The Query API
	#proxy_as
	match_to and first_rel_to
	Finding in Batches
	Orm_Adapter
	Find or Create By…

	Query Examples
	Example 1: Find all contacts for a user two hops away, but don’t include contacts which are only one hop away
	Example 2: Simple Recommendation Engine

	QueryClauseMethods
	ActiveGraph::Core::Query
	#match
	#optional_match
	#using
	#where
	#where_not
	#match_nodes
	#unwind
	#return
	#order
	#limit
	#skip
	#with

	#with_distinct
	#create
	#create_unique
	#merge
	#delete
	#set_props
	#set
	#on_create_set
	#on_match_set
	#remove
	#start
	clause combinations

	Configuration
	In Rails
	Other Ruby apps
	Variables
	Instrumented events

	Migrations
	Generators
	Transactions
	The schema file
	Tasks
	neo4j:migrate:all
	neo4j:migrate
	neo4j:migrate:up
	neo4j:migrate:down
	neo4j:migrate:status
	neo4j:rollback
	neo4j:schema:dump
	neo4j:schema:load

	Integrate Neo4j.rb with ActiveRecord migrations
	Migration Helpers
	#execute
	#query
	#remove_property
	#rename_property
	#drop_nodes
	#add_label
	#add_labels
	#remove_label
	#remove_labels
	#rename_label
	#add_constraint
	#drop_constraint
	#add_index
	#drop_index
	#say
	#say_with_time
	#populate_id_property
	#relabel_relation
	#change_relations_style

	Testing
	How to clear the database
	Cypher DELETE
	The database_cleaner gem
	Delete data files
	RSpec Transaction Rollback
	Using Rack::Test

	Contributing
	The Neo4j.rb Project
	Low Hanging Fruit
	Communicating With the Neo4j.rb Team
	Running Specs
	Before you submit your pull request
	Automated Tools
	Documentation

	Additional Resources
	Helper Gems
	devise-activegraph
	cancancan-activegraph
	neo4j-paperclip
	neo4jrb_spatial
	neo4j-rspec

	Additional features include
	Requirements
	Indices and tables
	Index

